

http://researchcommons.waikato.ac.nz/

Research Commons at the University of Waikato

Copyright Statement:

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

The thesis may be consulted by you, provided you comply with the provisions of the

Act and the following conditions of use:

 Any use you make of these documents or images must be for research or private

study purposes only, and you may not make them available to any other person.

 Authors control the copyright of their thesis. You will recognise the author’s right

to be identified as the author of the thesis, and due acknowledgement will be

made to the author where appropriate.

 You will obtain the author’s permission before publishing any material from the
thesis.

http://researchcommons.waikato.ac.nz/

Occlusion Prediction For Kiwifruit

Yield Estimation

A thesis

submitted in fulfilment

of the requirements for the Degree

of

Doctor of Philosophy in Engineering

at

The University of Waikato

by

Matthew Seabright

2020

Abstract

Kiwifruit is very important to the New Zealand economy, bringing in NZ$2.39

billion in the 2017/2018 season and projected to grow to NZ$4.5 billion by

2025. Every season, the expected yield from each orchard is estimated. These

estimates are used for both on-orchard decisions regarding thinning and spray-

ing, and industry level decisions regarding export pricing, supply agreements,

labour requirements, packaging quantities and more. The current method for

yield estimation is manual and prone to errors. In the 2016/17 growing season,

green kiwifruit estimates were 5.9% lower than actual harvest yield, resulting

in over 5 million trays (approximately 18,000 tons) of fruit being disposed of.

An automated system could reduce errors saving the industry significant

amounts of money. Such a system could realise other benefits such as providing

more granular information on orchard performance to growers and increasing

labour efficiency and crop uniformity via targeted labour. Other automated

fruit yield estimation systems have been developed but have suffered from

sub-optimal performance due to occlusion of fruit. The work presented here

introduces a system that has been developed with the aim of minimising oc-

clusion where possible and employs an occlusion prediction model to account

for remaining occlusion. The system utilises stereo vision, a 3D lidar unit, an

inertial measurement unit and LED lighting mounted on an all terrain vehi-

cle (ATV). Data is captured across 16 maturity areas, consisting of 33.9 Ha

of commercial kiwifruit orchards. A simultaneous localisation and mapping

system is used to locate the ATV within the orchard. A convolutional neural

network detects kiwifruit, which are localised via stereo triangulation. Indi-

vidual fruit are tracked through overlapping images to reduce occlusion while

ensuring no double counting. Fruit are counted and an occlusion prediction

model is applied to account for the unseen fruit.

The system is able to predict orchard scale fruit yield with a mean ab-

solute percentage error of 0.68%. This error rate was obtained from an in-

dependent test dataset and ground truth data obtained from a commercial

kiwifruit packhouse. The system can also generate visualisations of orchards

showing all individual detected fruit in 3D, fruit density maps and canopy

density maps. The ability of the system to predict yield with high accuracy

iii

and at orchard scale sets it apart from previous work. It is also the largest

scale study currently known, consisting of over 15 million fruit.

Embargo

This document is subject to a three year embargo from the date of acceptance.

This embargo is to protect the interests of the commercial partner of the work

(Robotics Plus Limited).

Acknowledgements

I would like to thank the following people:

• My family; Mum, Dad, Scott and Kat for their support.

• The magnificent Mark Jones for answering all of my questions and teach-

ing me many things.

• All the members of the CoHort team including, Jamie, Henry, Josh,

Michael, Hamish, Canaan, Phil, Gordon, Mahla, Bruce, Peter and Paul

for their support, advice and friendship.

• Everyone at Robotics Plus, past and present including, Alistair, Steve,

Daniel, Flo, Henri, Erin, Luke, Kyle, Matthew 2, Dan, Oscar, Chris,

Nick, John, Demler, Mel, Akshay, Bram, Carl, Ben, Will, Shiloh, JG,

Andy and Andrew for providing a fantastic workplace and supporting

me for the last few years.

• My supervisors; Mike, Lee, Michael and Rachael for their advice, support

and the many lunches at Nourish.

• MBIE for providing funding for this work.

• Andrew Scott, the rest of the Gro-Plus team and the orchard owners for

giving advice and allowing me into their orchards.

• Authors and contributors of open-source applications/libraries that were

relied upon heavily. To name a few, ROS, OpenCV, Tensorflow, Mask R-

CNN, PCL, the Linux kernel, Inkscape, GIMP, LATEX, Python, NumPy,

Scikit-learn.

Thank you all very much!

Contents

1 Introduction 1

1.1 Yield Estimation . 2

1.2 Labour Shortage . 4

1.3 Background . 5

1.3.1 Growing Kiwifruit . 5

1.3.2 New Zealand Kiwifruit Supply Chain 9

1.4 Research Questions . 10

1.5 Thesis Structure . 13

1.6 Publications . 13

2 Literature Review 16

2.1 Machine Vision Based Fruit Yield Estimation Systems 16

2.1.1 Imaging Sensors . 17

2.1.2 Imaging Conditions . 18

2.1.3 Detection Methods . 20

2.1.3.1 Hand Engineered 21

2.1.3.2 Convolutional Neural Networks 23

2.1.4 Occlusion Compensation Methods 29

2.1.4.1 Multi-frame Tracking 30

2.1.4.2 Multi-fruit Region Classification 32

2.1.4.3 Other Occlusion Mitigation Techniques 33

2.1.5 Conclusions . 34

2.2 Sparse Stereo Correspondence 34

2.2.1 Conclusions . 37

2.3 Point Cloud Registration . 37

2.3.1 Conclusions . 38

2.4 Simultaneous Localisation and Mapping 39

3 Data Collection 41

3.1 Data Capture System Hardware 41

3.1.1 Cameras . 41

3.1.2 Lighting . 45

vii

3.1.3 Lidar . 45

3.1.4 Other Sensors . 48

3.1.5 Mechanical Design . 48

3.1.6 Assembled Data Capture System 49

3.2 Data Capture System Software 52

3.3 Camera Calibration . 53

3.4 Data Collection Method . 54

3.5 Collected Data . 56

3.5.1 Data Capture System Issues 59

3.6 Ground Truth Data . 59

4 ATV Localisation 62

4.1 Point Cloud Filtering . 65

4.1.1 Surface Normals Filter 65

4.1.2 Nearest Neighbour Filter 67

4.2 SLAM Parameter Tuning . 68

4.2.1 SLAM Quality Evaluation 71

4.2.2 Shade Cloth Occlusion 71

4.2.3 Final SLAM Configuration 78

4.3 SLAM Evaluation . 79

5 Canopy Density 80

5.1 Sky Detection Algorithm . 80

5.2 Evaluation Method . 81

5.3 Results . 82

5.4 Canopy Density Maps . 85

6 Kiwifruit Detection 86

6.1 Detection System Options . 86

6.1.1 Mask R-CNN Configuration 87

6.2 Image Labelling . 88

6.3 Training . 90

6.4 Inference . 90

6.5 Evaluation . 91

6.5.1 Failure Cases . 92

7 Kiwifruit Localisation 96

7.1 Stereo Matching Algorithm 97

7.1.1 Stage One . 98

7.1.2 Stage Two . 99

7.2 Setting Parameters . 103

viii

7.3 Evaluation . 103

7.4 Results . 104

8 Multi-Frame Fruit Tracking 107

8.1 Fruit Localisation Error . 108

8.2 Closest Point . 109

8.3 Iterative Closest Point . 112

8.4 Kernel Correlation . 113

8.5 Calyx Comparison . 115

8.5.1 Facial Recognition for Kiwifruit 116

8.5.1.1 Training . 117

8.5.1.2 Evaluation 118

8.5.1.3 Results . 120

8.5.2 Direct Calyx Comparison 123

8.5.2.1 Raw Image Comparison 123

8.5.2.2 Range Normalisation 126

8.5.2.3 Mean Compensation 129

8.5.2.4 Binary Image Comparison 132

8.5.3 Summary . 134

8.6 Intra-Pass Fruit Tracking System 134

8.6.1 Kernel Correlation with Calyx Comparison 136

8.6.2 Match Selection . 140

8.6.3 Final Fruit Matching 145

8.6.4 Evaluation . 146

8.6.5 Results . 147

8.7 Inter-Pass Fruit Rejection . 151

8.8 Fruit Visualisations . 152

9 Model Parameters 157

9.1 Fruit Density . 157

9.2 Fruit Height Variation . 158

9.3 Fruit Clustering . 159

9.4 Fruit Distribution Across Row 161

9.5 Orchard Area . 163

9.6 Orchard Block Perimeter . 165

9.6.1 Side Row Overhang . 165

9.6.2 End Row Overhang . 166

9.6.3 Measurement . 166

9.7 Row Width . 167

9.8 Final Parameters . 169

ix

10 Occlusion Prediction Model 171

10.1 Ground Truth Fruit Count . 171

10.2 The Data . 172

10.2.1 Possible Error In Ground Truth Data 178

10.3 Models . 179

10.3.1 Baseline Static Correction Factor Model 180

10.3.2 Linear Regression . 180

10.3.3 Decision Tree Regression 181

10.3.4 K-Nearest Neighbour 181

10.4 Performance . 183

11 Conclusions 186

11.1 Strengths Of The Work . 189

11.2 Weaknesses Of The Work . 190

12 Future Work 192

12.1 Data . 192

12.2 SLAM . 194

12.3 Incremental Improvements . 196

12.3.1 Vehicle . 196

12.3.2 Stereo Localisation . 196

12.3.3 Row Detection . 198

12.3.4 Detection . 198

12.3.5 Calyx Comparison . 199

12.3.6 Model Parameters . 200

12.4 New Features . 201

12.4.1 Fruit Size Estimation 201

12.4.2 Psa Detection . 203

12.4.3 Fruit to Plant Correlation 205

12.4.4 Targeted Labour . 205

12.4.5 Fruit Maturity Prediction 206

References 207

Appendices 219

A Example Packout Report . 220

List of Figures

1.1 The giant kiwifruit located near the town of Te Puke in the Bay

of Plenty, New Zealand. 2

1.2 The yield estimation errors for green and gold fruit over three

growing seasons. 4

1.3 Left, two Hayward (green) kiwifruit. Right, two Gold3 (gold)

kiwifruit. 6

1.4 An orchard shortly before harvest. 7

1.5 A diagram showing the structure of the pergola kiwifruit grow-

ing system from a top down view. 8

1.6 A kiwifruit plant in an orchard in early spring, before foliage

starts to grow. 9

1.7 A demonstration of how fruit density and fruit distribution ef-

fect occlusion rates. 12

1.8 iagram showing the flow of data through the various components

of the yield estimation system. 14

2.1 Grapes on the vine with black paper used as an artificial backdrop. 19

2.2 The yield estimation hardware used by Gongal et al. straddles

a row of apples, blocking out light, providing a consistent back-

drop and allowing imaging from both sides of the plant. 19

2.3 The ‘Shrimp’ mobile robot used by researchers at the University

of Sydney. 20

2.4 The autonomous, multi-purpose, mobile platform presented by

Jones et al. 21

xi

3.1 The data capture system in an orchard. 42

3.2 Scale diagram showing camera spacing from the front. Stereo

baseline is 120 mm, separation between the two stereo pairs is

750 mm. 43

3.3 Scale diagram showing camera and lidar positioning from the

front. 44

3.4 The arrangement of lasers in the Quanergy M8-1 lidar shown

from a side view. 46

3.5 Lidar field of view from the side. 47

3.6 Lidar field of view from the top, looking down the axis of the

lidar. 47

3.7 Lidar field of view from the front. 48

3.8 A computer aided design (CAD) rendering of the sections of the

frame. 50

3.9 Overview of the components of the data capture system. . . . 50

3.10 Overview of sensors on data capture system. 51

3.11 View from the operators seat of the data capture system. . . . 51

3.12 An example of an image used for camera calibration. 53

3.13 Order of passes. 55

3.14 An example of an image from the bud dataset. The small round

objects are the buds. 57

3.15 An example of an image from the fruit dataset. 57

3.16 Data collection going well. 61

4.1 An occupancy grid produced by SLAM representing a top down

view of one end of an orchard block. 63

4.2 A top down view showing the points from a single scan from

the lidar. 64

4.3 Histogram of the vertical component of estimated normal vec-

tors for 5000 lidar scans. 67

4.4 Horizontal versus vertical resolution for the Quanergy M8 lidar. 68

xii

4.5 The neighbour threshold for the nearest neighbour filter over

distance. 69

4.6 A top down view of a single lidar scan. 70

4.7 An example of acceptable SLAM output. 72

4.8 An example of unacceptable SLAM output. 73

4.9 An example of unacceptable SLAM output. 74

4.10 An example of an orchard with shade cloth between every sec-

ond row. 75

4.11 Side view of the Velodyne VLP16 lidar mounted above the

Quanergy M8 lidar. 76

4.12 Top down view of lidar point clouds with multiple lidar sensors. 77

4.13 An example of acceptable SLAM. 79

5.1 An example of sky detection. 81

5.2 A section of an image showing ground truth sky labels. 82

5.3 Sky detection evaluation. 83

5.4 The canopy density of an orchard block shown from a top down

view. 85

6.1 Images are resized from a resolution of 1920×1200 to 1024×1024

with black bars top and bottom. 88

6.2 Example of a labelled image. 89

6.3 A second example of a labelled image. 90

6.4 The inference pipeline. 92

6.5 An example of fruit and calyx masks produced by Mask R-CNN. 93

6.6 An example of direct sun light on the camera. The detection

system is still able to detect the fruit. 93

6.7 An example of split masks caused by a wire intersecting the fruit. 94

6.8 An example of an image with multiple false positive calyx de-

tections, circled in red. 94

xiii

6.9 An example of an image with multiple leaves mistaken for ki-

wifruit, circled in red. 95

7.1 The geometry of a keypoint and search window. 98

7.2 A keypoint (blue) in its matching search window (green). . . . 99

7.3 The steps of the matching algorithm. 100

7.4 A decision tree describing stage one of the matching algorithm. 101

7.5 Two groups of ambiguity. 102

7.6 Example of a false positive match. 104

7.7 Example of an incorrectly matched fruit. 105

7.8 Example of fruit not being matched because they are too close

to the camera plane. 105

8.1 A demonstration of the three sources of fruit localisation error,

simplified to 2D. 109

8.2 A real example of very large inter-pass SLAM error, viewed from

above. 110

8.3 A demonstration of why the simplest approach (closest point)

does not work with large errors. 111

8.4 A demonstration of why the ICP algorithm fails in some cases. 113

8.5 The difference between the ICP algorithm and the KC algorithm.114

8.6 The negative Gaussian function used as the cost for each pair

of points in the KC algorithm. 115

8.7 A subset of the calyx dataset. 116

8.8 The evaluation image selection process. 119

8.9 Each image in the ‘fixed set’ is compared to each in the ‘same

set’ (green) by measuring the Euclidean distance between the

generated vectors. 120

8.10 The performance of the FaceNet based calyx comparison system

on the validation calyx dataset. 121

xiv

8.11 An example of images of two fruit in the calyx validation dataset

where the edge of images is seen. 122

8.12 Two examples of the 40 pixel colour calyx comparison process. 124

8.13 Two examples of the 40 pixel grey-scale raw calyx comparison

process. 125

8.14 An example of two images of the same calyx with different

brightness levels. 125

8.15 The steps used to create the normalised calyx images. 126

8.16 An example of sky pixels in a calyx image. 127

8.17 An example of the calyx not being properly centred in both

images. 127

8.18 An overview of the translation system. 128

8.19 A full image showing the how the bright spot on each fruit

changes across the image. 131

8.20 An example of bright spot mismatch between two images of the

same calyx. 131

8.21 The binary calyx image formation process. 132

8.22 The distribution of difference scores produced by the calyx com-

parison system. 136

8.23 A comparison of the ICP, KC and KC+CC algorithms. 137

8.24 An example of a fruit detected on the edge of an image. 138

8.25 The calyx comparison score normalisation function from Equa-

tion 8.3. The dotted line represents the threshold (thresh),

which is 54.0. 138

8.26 The Gaussian part of the cost function used for the transform

optimisation, seen in Equation 8.4. Note the Y-axis is negative. 139

8.27 The calyx comparison scores and distance between points that

are eligible for matching. Any potential matching combination

in the green zone will be matched, assuming it meets the other

matching requirements. 141

xv

8.28 A flow diagram for stage one of the match selection process. . 142

8.29 The calyx comparison scores and distance between points that

are eligible for matching with the final fruit matching system. 146

8.30 An example of the intra-pass fruit tracking system evaluation

method. 148

8.31 An example of the intra-pass fruit tracking system failing due

to occlusion. 149

8.32 An example of the intra-pass fruit tracking performing well de-

spite severe glare in the images. 150

8.33 An example of the inter-pass fruit rejection system, viewed from

above. 152

8.34 An example of the inter-pass fruit rejection system with real

data, viewed from above. 153

8.35 The final fruit point cloud viewed from above. 154

8.36 The final fruit point cloud viewed from above. 155

8.37 A fruit density map of an orchard block, displayed over an aerial

photograph of the orchard. Some areas of the orchard are more

productive than others. The small evenly spaced areas of no

fruit are where the male plants are. 156

9.1 The fruit height distribution for four orchard blocks. 159

9.2 Fruit viewed from above. 160

9.3 A histogram of the cluster sizes in an orchard block. 160

9.4 A diagram demonstrating how the position of fruit across the

row is measured. 162

9.5 The distribution of fruit across the row for four orchard blocks. 163

9.6 An example of an orchard map. 164

9.7 Diagram showing the side row overhang. 165

9.8 View from within the first row of an orchard. 166

9.9 Unlike the outer row sides, row ends have little to no overhang. 167

xvi

9.10 SLAM produced map of an orchard block showing how the sec-

tions of the perimeter of the block are classified. 168

9.11 SLAM produced map of an orchard block showing how the av-

erage row width is measured. 168

10.1 The ground truth fruit count vs. algorithm fruit count for the

maturity areas in the training dataset. 173

10.2 The average fruit size and average row width have a positive

correlation. 175

10.3 The average fruit size and fruit height variation have a negative

correlation. 176

10.4 Correction factor vs. area for the maturity areas in the training

dataset. 178

10.5 An aerial shot of P A. 179

10.6 The error rate with different combinations of meta parameters

for the correction factor K-nearest neighbour model. 182

10.7 The error rate with difference combinations of meta parame-

ters for the correction factor K-nearest neighbour model with

reduced predictor variable set. 183

12.1 Examples of detected fruit masks. 202

12.2 An example of the brown spotting on leaves caused by Psa. . . 204

12.3 An example packout report with personally identifying infor-

mation censored. 221

List of Tables

3.1 Statistics of captured data. 58

3.2 Information on captured fruit data. 58

4.1 The key configuration parameters used for Cartographer. . . . 78

5.1 Sky detection evaluation statistics on a per pixel basis. 83

6.1 Mask R-CNN configuration parameters. 88

6.2 Statistics on labelled data. 89

6.3 Mask R-CNN training parameters. 91

6.4 Inference PC specifications. 91

7.1 The results of the matching system evaluation. Over 99% of

matches are correct. 104

8.1 Differences between orchard blocks. The row widths and fruit

height vary both between blocks as well as within blocks. This

means overlap between images is inconsistent. 108

8.2 Training parameters used for FaceNet. 117

8.3 The performance of the two variants of the raw image calyx

comparison system. 124

8.4 The performance of the variants of the range normalisation ca-

lyx comparison system. 129

8.5 The performance of the variants of the mean compensation ca-

lyx comparison system. 130

xviii

8.6 The performance the variants of the binary image calyx com-

parison system. 133

8.7 The performance of each of the calyx comparison systems eval-

uated. 135

8.8 Three iterations of stage one of the match selection system. . . 143

8.9 Stage two of the match selection system. 144

8.10 The intra-pass fruit tracking system evaluation results. 147

8.11 The number of fruit and time taken for each iteration of the

final fruit matching system. 151

9.1 The estimated fruit density of four orchard blocks. Fruit density

varies greatly between blocks. 158

9.2 The standard deviation of fruit heights across four orchard blocks.158

9.3 The mean number of fruit per cluster across four orchard blocks. 161

9.4 The KS statistic comparing a normal distribution to the actual

distribution of fruit across the row in four orchard blocks. . . . 163

9.5 List of all parameters for the occlusion prediction system and

the source of the data. 170

10.1 The algorithm fruit count error and correction factor for each

of the maturity areas in the training dataset. 173

10.2 The correlation coefficient (Pearson product-moment coefficient)

for all of the predictor variables against the ground truth data

for the fruit training dataset. 174

10.3 The number of trays of class one fruit produced per hectare of

orchard area for all maturity areas in the fruit training dataset. 177

10.4 The mean average percentage error (MAPE) of each of the mod-

els on the validation dataset, the test dataset and the mean of

the two. 184

10.5 Significance test for the occlusion models compared to the base-

line model. 185

Chapter 1

Introduction

Kiwifruit is New Zealand’s largest horticultural export (2016–2018 [1–3]) bring-

ing in NZ$2.39 billion in the 2017/2018 season [4]. The industry is projected

to grow even larger with revenue expected to rise to NZ$4.5 billion by 2025.

New Zealand kiwifruit is exported to 59 countries and makes up a third of the

countries total horticulture export revenue [5].

There are a two main issues stifling the growth of the New Zealand kiwifruit

industry. The first is labour shortages, particularly in the kiwifruit harvesting

season. The second is the errors seen with the current manual yield estimation

system that are causing significant costs for the industry. The current manual

system is to send orchard workers into orchards, who then count fruit by hand.

An automated yield estimation system can provide more thorough and ac-

curate estimates of yield than the current manual system. It can also provide a

higher degree of information granularity and new ways for growers to visualise

the performance of their orchards. This extra information could allow more

efficient and specific management decisions to be made, increasing produc-

tion. A high performing system may also enable techniques to increase labour

efficiency.

Other researchers have built automated yield estimation systems (Chapter

2) but have not been able to produce consistently accurate results. The main

factor preventing high accuracy is fruit occlusion. Fruit that are not visible

2

Figure 1.1: The giant kiwifruit located near the town of Te Puke in the Bay of

Plenty, New Zealand. The Bay of Plenty is the main kiwifruit growing region

of New Zealand, containing 80.7% of New Zealand’s crops [4]. The giant slice

of kiwifruit shows the importance of kiwifruit to the region’s economy.

are not able to be counted. Correcting for the under-counting is not trivial as

the ratio of occluded to unoccluded fruit is not consistent from plant to plant

or orchard to orchard. This thesis explores the use of an occlusion prediction

model to dynamically predict the occlusion ratio and improve yield estimation

accuracy.

1.1 Yield Estimation

One of the many steps in the kiwifruit production process is yield estimation.

Yield estimation is the counting of buds, flowers or fruit to predict the num-

ber of fruit that will be present at harvest time. It is conducted at multiple

stages throughout the growing process. The two main counts are completed

in December (shortly after fruitset), and February (when fruit are still small).

The counts produced via yield estimation are used throughout the supply

chain to aid in a variety of planning and decision making processes. Orchard

3

managers use the data for on-orchard decisions like thinning and spraying

strategies. Packhouses use the information for projecting labour, packaging

and coolstore requirements. Zespri, the company that exports the majority

of New Zealand’s kiwifruit overseas, use the data to formulate export pricing

strategies, supply agreements and plan shipping logistics.

The current method for yield estimation is to send people into orchards

who count buds/flowers/fruit in small sections of the orchard. Depending on

the preferences of the orchard manager, between 1% and 2% of the crop is

counted (some orchard managers may choose to not count at all). Counts

are then extrapolated to the full area of the orchard. For this method to be

accurate, the counting must be conducted with care and the area surveyed

must be representative of the orchard as a whole. However, this is often not

the case. On an industry wide scale, yield estimations are compiled for use by

Zespri. These estimates can be more than 10% away from the actual harvest

yields (Figure 1.2). Over the past three growing seasons, the most accurate

February yield estimation for either green or gold fruit was over 4.5% away

from actual yield1.

When yield estimates are incorrect, inefficiencies in the supply chain and

sub-optimal pricing strategies reduce grower profits. For example, when the

total crop is underestimated, fruit may be ‘crop managed’. The term ‘crop

managed’ is used to describe fruit that are destroyed, sold as stock feed or oth-

erwise not exported as they normally would be. Zespri employs this strategy in

some seasons due to a variety of factors and economic reasons. In the 2016/17

and 2017/18 seasons, over 6 million total trays of green fruit were crop man-

aged [6, 7]. This crop management resulted in a decrease in grower payments

(OGR) of NZ$0.34 per tray or 7.2% in the 2016/17 season [6]. In 2016, a Zespri

spokeswoman was quoted as saying; “Crop management isn’t a new thing -

the industry has used it in three of the past eight seasons” [8]. Although errors

in yield estimation are not always solely responsible for crop management, the

1By personal communication

4

2016/17 2017/18 2018/19
Growing Season

10

5

0

5

10

Er
ro

r (
%

)

New Zeland Kiwifruit Industry Yield Estimation Errors

Green December
Gold December
Green February
Gold February

Figure 1.2: The yield estimation errors for green and gold fruit over three

growing seasons. Yield estimations are performed in December and February.

The errors are relative to the harvested yield.

following was stated in the Trevelyan’s grower newsletter in September 2018;

“Going forward, Zespri has indicated that more accurate industry crop estima-

tion will ensure they can better manage market demand-to-supply and would

likely reduce their requirement to introduce crop management” [9].

1.2 Labour Shortage

In 2018, the New Zealand government declared a 1200 person labour shortage

in the kiwifruit industry [10]. The number of seasonal workers required to

harvest and process the crop is expected to increase 45% between 2017 and

2027 [11]. The labour issues will continue to worsen if labour saving solutions

are not found.

Yield estimation has a negligible labour requirement compared to tasks

such as harvesting and pruning [11]. However, yield estimation can be used

to maximise labour efficiency in these labour intensive tasks. For example, a

natural extension to yield estimation is enabling targeted thinning. Thinning

5

is the process of removing a subset of buds, flowers or fruit to maximise the

orchards productivity. However, variability within an orchard means that the

one area may require significant thinning, while another requires no thinning.

Targeted thinning would, hypothetically, direct orchard workers to the areas

of the orchard that require thinning. It would then inform the workers exactly

how much thinning is required to reach the desired bud, flower or fruit den-

sity. This augmentation of human labour would both reduce overall labour

requirements and increase crop uniformity, resulting in higher yield and lower

costs.

Currently, harvesting and thinning accounts for 45% of on-orchard labour

requirements, while pruning accounts for 47% [11]. Automated solutions for

harvesting are being investigated by multiple groups around the world [12–

17]. Finding viable automated solutions to these problems would significantly

reduce the required labour force. Many of the technologies required for yield

estimation (particularly object detection and localisation on an orchard scale)

are also required for automated harvesting, thinning and pruning systems.

Thus, yield estimation can be seen as a stepping stone toward automated

harvesting and pruning solutions.

1.3 Background

This section is intended to provide an overview of kiwifruit growing practices

and the New Zealand kiwifruit supply chain. The contents of this section are

assumed prior knowledge for the remainder of the document.

1.3.1 Growing Kiwifruit

There are two varieties of kiwifruit commonly grown in New Zealand, Hay-

ward and Gold3 (Figure 1.3). The Hayward variety is commonly referred

to as ‘green’ kiwifruit. Green kiwifruit have a furry brown skin, green flesh

and a sweet tangy flavour. The Gold3 variety (often abbreviated to G3) are

6

Figure 1.3: Left, two Hayward (green) kiwifruit. Right, two Gold3 (gold)

kiwifruit.

commonly referred to as ‘gold’ kiwifruit and are marketed by Zespri under

the ‘SunGold’ name. Gold kiwifruit have a smooth brown skin, yellow-gold

flesh and a sweet flavour. There are other varieties of kiwifruit grown in New

Zealand (such as Green14 and Hort16A), but Hayward and Gold3 make up

94.6% of the total Zespri crop, as of 2018 [4]. This document refers to the

Hayward and Gold3 varieties ‘green’ and ‘gold’ kiwifruit respectively.

Kiwifruit orchards are split into sections called blocks. A block is a contin-

uous area of kiwifruit planting, ranging in size from a fraction of a hectare, to

multiple hectares. Blocks are often separated by shelter belts, which are high

thin trees that shelter the kiwifruit plants from wind. Kiwifruit orchards are

also split into maturity areas. Often, multiple blocks will make up a maturity

area, but they can be just one block. Typically, blocks are grouped into a

7

Figure 1.4: An orchard shortly before harvest. Trunks and posts are arranged

in rows. The canopy contains the fruit and foliage in a flat structure approxi-

mately 1.8 m from the ground.

maturity area based on factors such as geographic similarities and the age of

the plants. Maturity areas can contain a maximum of 60,000 trays of kiwifruit

(see Section 1.3.2 for further explanation). All of the fruit in a maturity area,

should reach maturity at approximately the same time, as they can only be

harvested once a sample of the fruit have passed a maturity test. If sections of

a maturity area mature later than other, potential earnings can be lost while

waiting for fruit to mature as fruit harvested earlier can earn a higher payout

for the grower. Orchards range in size from less than a hectare, with a sin-

gle maturity area consisting of one block, to hundreds of hectares with many

maturity areas, each split into multiple blocks.

Modern kiwifruit orchards use the pergola growing system. The pergola

growing system has the fruit growing in a flat, horizontal canopy approximately

1.8 m from the ground (Figure 1.4). Plants and posts are alternated to form

rows. The width of rows varies between orchards with most between 3 m and

6 m wide.

There are three main structural components of the pergola growing system,

posts, beams and wires (Figure 1.5). Posts are placed vertically into the ground

8

Post

Leader

Trunk

Beam

Cane

Wire

Row Direction

Figure 1.5: A diagram showing the structure of the pergola kiwifruit growing

system from a top down view. The row runs vertically through the diagram.

Green features represent the plants, grey is the orchard structure. The area

between four posts is called a ‘bay’.

and support the canopy. Beams sit on top of the posts and run across the width

of rows. Beams are usually made of either galvanised steel or wood. Wires

run the length of the rows, sitting on top of the beams, and have a spacing of

100 mm to 500 mm between them.

The trunk of the plants goes from the ground, up into the canopy (Figure

1.6). From the top of the trunk, two leaders extend in opposite directions,

down the length of the row. The leaders support canes, which are tied to the

wires and run across the row from each side. Fruit and leaves grow on small

shoots that come off the canes.

Kiwifruit plants each have a sex. Only the female plants produce fruit.

The male plants produce pollen that is required to pollinate the female flowers

and allow them to grow into fruit. Growers plant approximately one male for

9

Trunk

Post
Leader

Wire

Cane

Beam

Beam

Leader

Figure 1.6: A kiwifruit plant in an orchard in early spring, before foliage starts

to grow.

every eight females, although this ratio varies significantly between orchards.

Some orchards are female only, relying entirely on supplementary pollen, while

some others are male only, used to supply pollen to other orchards.

In New Zealand, the kiwifruit growing cycle is the following: In Septem-

ber and October, new buds emerge and grow. In November, the buds open

revealing flowers. The female flowers are pollinated with pollen from the male

flowers. In December the pollinated flowers begin to develop into fruit. These

fruit grow in size over the following months and reach maturity between March

and June, when they will be harvested. After the harvest, winter pruning and

other maintenance is performed at various stages before the next growing sea-

son begins.

1.3.2 New Zealand Kiwifruit Supply Chain

There are three main types of entity that make up the New Zealand kiwifruit

supply chain. The first is the grower, who produces the fruit and manages the

10

orchard. The second is the packhouse, which grades and packs the fruit. The

third is Zespri, who export and markets the majority of fruit overseas.

The packhouse grades each piece of fruit as class 1, class 2 or reject. Class

1 fruit are the highest quality and are generally exported by Zespri. Class 2

fruit are lower quality fruit which go into the New Zealand and Australian

markets. Rejects are fruit that do not meet the class 1 or 2 criteria because of

defects or size.

Kiwifruit are generally packed into trays. All trays contain approximately

3.6 kg of fruit. The number of fruit on a tray is determined by the count size,

which is a measurement of fruit size. Standard count sizes range from 18 to

41. The count size is the number of fruit of that size that fit onto a tray. For

example, a count size 25 tray will have 25 fruit on it and weight approximately

3.6 kg. Fruit production is typically measured in trays, as opposed to raw fruit

numbers as trays accounts for fruit size.

1.4 Research Questions

This thesis addresses two main issues with fruit yield estimation systems, de-

tailed in Chapter 2:

Appearance variation Variation in fruit size, shape and colour, lighting and

distance to camera make detection of fruit difficult.

Fruit occlusion Occlusion due to leaves, branches, orchard structure and

other fruit cause some fruit to be partially or completely invisible to an

imaging system.

Appearance variation has largely been overcome in recent years with the

use of advanced convolutional neural networks (CNN) such as SSD, YOLO,

and Faster R-CNN coupled with high performance graphics processing units

(GPU).

11

Fruit occlusion has been an issue that many researchers have attempted to

overcome by using correction factors. These correction factors are usually ob-

tained via regressing the number of fruit detected against harvest counts. This

provides significant improvements in accuracy and eliminates under-counting

bias, but does not account for all the variation between orchards/vineyards/-

plants.

Ideally, each orchard/vineyard/plant would have its own correction factor.

These individualised correction factors would be adjusted based on the prop-

erties of the orchard/vineyard/plant they belong to. For example, an orchard

with high fruit density should have a higher rate of occlusion, and hence a

higher correction factor, when compared to an orchard with a lower fruit den-

sity. Figure 1.7 demonstrates how fruit density effects occlusion rate. The

same can be said for fruit clustering, in that an orchard where fruit are heavily

clustered would have a higher rate of occlusion, when compared to an orchard

with uniform fruit distribution. Foliage density and other factors could also

effect the rate of occlusion. These factors can be measured whilst counting

fruit, allowing an occlusion prediction model to produce individualised correc-

tion factors providing more accurate yield estimations.

The hypothesis that is tested by this work is the following: An occlusion

prediction model will produce dynamic correction factors calculated based on

measurable characteristics of an orchard. These individualised correction fac-

tors will provide more accurate predictions of yield than a static correction

factor.

To test this hypothesis, a new yield estimation system is designed, imple-

mented and tested. The yield estimation system is used in kiwifruit orchards

to predict harvest yield on an orchard scale. To minimise the effects of oc-

clusion, multiple viewpoints are used by having significant overlap between

images taken from a moving platform. To negate the double counting intro-

duced by using multiple viewpoints, a novel fruit tracking system, capable of

localising individual fruit within an orchard context, is employed. The fruit

12

Figure 1.7: A demonstration of how fruit density and fruit distribution effect

occlusion rates. Circles are coloured red if they overlap another circle, blue

if they do not. The top row shows an increasing number of randomly placed

circles. Each panel in the bottom row has 40 circles distributed in a normal

distribution about the centre, with decreasing standard deviation.

13

tracking system utilises stereo vision and lidar based simultaneous localisation

and mapping (SLAM) to position each fruit within the orchard. Parameters

that correlate with occlusion rate are measured and used for the occlusion pre-

diction model. Final yield estimates are calculated and compared to ground

truth data.

1.5 Thesis Structure

This thesis begins with background on the kiwifruit industry and how yield

estimation is important to the process. The research aims of the work are then

outlined along with an overview of how other researchers have approached

solving similar problems. The bulk of the document is divided into the various

components that make up the overall yield estimation system. Figure 1.8 shows

each component and how data flows between them. Conclusions about the

work and how the research questions have been answered follow. A thorough

outline of potential changes, modifications and extensions that could be applied

to this system or others, concludes the document.

1.6 Publications

The following is a list of publications resulting from this work:

• M. Duke, J. Barnett, J. Bell, M. H. Jones, P. Martinsen, B. McDonald,

M. Nejati, A. Scarfe, P. Schaare, M. Seabright, H. Williams, J. Lim,

and H. Ahn, Automated Pollination of Kiwifruit Flowers, in 7th Asian-

Australasian Conference on Precision Agriculture (7ACPA), (Hamilton,

New Zealand), pp. 15, November 2017. Author’s contributions: Design

of electronics, software and mechanical systems, field testing.

• M. Seabright, L. Streeter, M. Cree, M. Duke, and R. Tighe, Simple

Stereo Matching Algorithm for Localising Keypoints in a Restricted

Search Space, in 2018 International Conference on Image and Vision

14

Data Capture
Chapter 3

ATV Localisation
Chapter 4

Fruit Detection
Chapter 6

Occlusion Prediction Model
Chapter 10

Fruit Localisation
Chapter 7

Model Parameters
Chapter 9

Fruit Tracking
Chapter 8

Canopy Density
Chapter 5

Figure 1.8: Diagram showing the flow of data through the various compo-

nents of the yield estimation system. The chapter in which each component is

described is shown.

Computing New Zealand (IVCNZ), vol. 2018-Novem, (Auckland, New

Zealand), pp. 16, IEEE, November 2018. Author’s contributions: De-

sign, implementation and testing of stereo matching algorithm.

• H. A. Williams, M. H. Jones, M. Nejati, M. J. Seabright, J. Bell, N. D.

Penhall, J. J. Barnett, M. D. Duke, A. J. Scarfe, H. S. Ahn, J. Lim, and

B. A. MacDonald, Robotic kiwifruit harvesting using machine vision,

convolutional neural networks, and robotic arms, Biosystems Engineer-

ing, vol. 181, pp. 140156, May 2019. Author’s contributions: Design of

electronics, software and mechanical systems, field testing.

• H. Williams, M. Nejati, S. Hussein, N. Penhall, J. Y. Lim, M. H. Jones,

J. Bell, H. S. Ahn, S. Bradley, P. Schaare, P. Martinsen, M. Alomar,

P. Patel, M. Seabright, M. Duke, A. Scarfe, and B. MacDonald, Au-

tonomous pollination of individual kiwifruit flowers: Toward a robotic

kiwifruit pollinator, Journal of Field Robotics, pp. 1-17, January 2019.

Author’s contributions: Design of electronics, software and mechanical

15

systems, field testing.

• H. Williams, C. Ting, M. Nejati, M. H. Jones, N. Penhall, J. Lim, M.

Seabright, J. Bell, H. S. Ahn, A. Scarfe, M. Duke, and B. MacDonald, Im-

provements to and largescale evaluation of a robotic kiwifruit harvester,

Journal of Field Robotics, vol. 0, July 2019. Author’s contributions:

Software for robotic arm control, system testing, end effortor design.

• M. Jones, J. Bell, D. Dredge, M. Seabright, A. Scarfe, M. Duke, and

B. MacDonald, Design and Testing of a Heavy-Duty Platform for Au-

tonomous Navigation in Kiwifruit Orchards, Biosystems Engineering,

vol. 187, 2019. Author’s contributions: Design and building of hard-

ware and software for power genreation system.

Chapter 2

Literature Review

A modern machine vision based fruit yield estimation system consists of mul-

tiple subsystems. The first is an imaging system to collect images of plants.

This imaging system can consist of a single hand-held camera, an autonomous

robot carrying many sensors, or anything in between. The second subsystem

is a detection system to detect the fruit in the images. These detection sys-

tems range from simple colour thresholding systems, to convolutional neural

networks (CNNs). Modern systems then include a localisation subsystem to

position each fruit either within the context of a single plant, or within an en-

tire orchard/vineyard context. Localisation systems vary from overlap based

algorithms to GPS based systems with stereo vision. The final section is a

yield estimation model that transforms the number of fruit seen (and possibly

other information) into an yield. The approach of other researchers in each of

these areas is analysed to inform the design of the kiwifruit yield estimation

system.

2.1 Machine Vision Based Fruit Yield Estima-

tion Systems

Machine vision fruit yield estimation systems have been a focus of research

for two decades. Systems have been developed for counting many types of

17

fruit including apples [18–28], grapes [29–31], mangoes [32–37], kiwifruit [38],

capsicum, [39, 40], almonds [22, 41] and dragonfruit [42]. Over the last five

years, focus has been shifting from increasing the accuracy of fruit detection,

to increasing the accuracy of yield estimation.

2.1.1 Imaging Sensors

For detecting fruit on plants, the sensor of choice is the colour camera with

the majority of studies using industrial or digital single-lens reflex (DSLR)

cameras [18–25,29,30,32–35,38,42–70] whereas Aquino et al., Gong et al. and

Qian et al. used cellphone cameras [26,71,72]. A yield estimation system based

on a cellphone is an enticing prospect for growers as it would allow quick and

easy measurement without requiring extra equipment. However, the lack of

computational power and imaging consistency are significant disadvantages to

this approach.

Stajnko et al. used a thermal camera to capture the thermal gradient be-

tween apples and leaves in the afternoon [27]. However, detecting fruit near

the inner sections of the tree, was difficult due to the fruit being shaded from

the sun by leaves. Underwood et al. used a vertically oriented lidar to estimate

the canopy volume of almond trees [41]. By combining the canopy volume es-

timations with a colour camera, better yield estimation accuracy was achieved

than by using the camera or lidar in isolation. Stein et al. also used a vertical

lidar and a camera [36]. However, they used the lidar to mask out the areas of

each image not containing the tree being measured. The mask was created by

first segmenting each tree in the lidar point cloud, then projecting the resulting

segmentation onto the images. Sa et al. used both a colour and an infra-red

camera to provide an extra input channel to their detection system for sweet

pepper other fruit [39, 40]. Wang et al. compared the performance of a depth

camera (RGB-D), a stereo vision system and a time of flight (ToF) camera

for on-tree estimation of mango size [37]. The authors recommend RGB-D

cameras based on there low cost and high performance, although the authors

18

note the performance of the camera was poor in direct sunlight.

2.1.2 Imaging Conditions

The ideal yield estimation system could be used at any time of day as it

would be robust to varying lighting conditions. In reality, many researchers

have chosen to image at night with artificial lighting to ensure consistency

[19, 20, 24, 31, 33, 35, 38, 40, 43, 46, 58–60, 64, 65, 73]. This negates the changes

in light levels, colour temperature and background colour, aiding detection.

However, a system that can only be used at night has severely limited practical

utility. Using artificial lighting during the daytime can decrease the variability

of lighting conditions. Some researchers employ artificial LED or halogen

lighting for day time imaging [19, 20, 28, 29, 40, 46, 47, 58, 59]. Some even use

the specular reflection from their lighting systems as a feature to aid detection

[19,20,46,47,58,59].

Avoiding false detection caused by fruit in adjacent rows has led some re-

searchers to include an artificial background behind plants or fruit (Figure

2.1) [18, 23, 30, 53, 72]. Dorj et al. went a step further and manually masked

out background pixels from their images [50, 51]. With some crops, it is pos-

sible to build an imaging platform that straddles a row of plants [28, 39, 40].

This approach provides a consistent backdrop and rejects natural light, giving

greater consistency to images (Figure 2.2). It also allows imaging from both

sides of the plant in a single pass.

Cameras and other sensors can be mounted and moved through orchard-

s/vineyards in multiple ways. Some researchers used hand-held sensors [26,

41, 50–52, 60, 71, 72]. Holding cameas by hand is a low cost option that gives

flexibility in its usage, however imaging consistency depends on the operator.

Mounting the sensors on a tractor or other farm vehicle gives a higher degree

of consistency compared to hand-held and is hence a popular option for re-

searchers [19, 20, 28, 29, 33, 46, 47, 64]. An operator is still required to navigate

the vehicle along the prescribed path and control the speed of the vehicle, but

19

Figure 2.1: Grapes on the vine with black paper used as an artificial backdrop.

(Source: Aquino et al. 2017 [72]. Used with permission.)

Figure 2.2: The yield estimation hardware used by Gongal et al. straddles a

row of apples, blocking out light, providing a consistent backdrop and allowing

imaging from both sides of the plant. (Source: Gongal et al. 2016 [28]. Used

with permission.)

20

Figure 2.3: The ‘Shrimp’ mobile robot used by researchers at the University

of Sydney [22, 36, 41, 55, 56]. (Source: Hung et al. 2015 [55]. Used with per-

mission.)

the orientation and height of the sensors is fixed. With a vehicle, more sen-

sors can be used and more plants can be covered in a given time compared to

hand-held sensors. For the greatest consistency, an autonomous platform can

be used such as the ‘Shrimp’ (Figure 2.3) [22,36,39–41,45,55,56,74]. Jones et

al. presented an autonomous, multi-purpose, mobile platform (AMMP) specif-

ically designed for use in kiwifruit orchards (Figure 2.4) [75]. The AMMP has

been used for both harvesting and pollination of kiwifruit, but not yield esti-

mation [15, 16, 76, 77]. Automated control over the path and velocity ensures

consistent positioning of the sensors.

2.1.3 Detection Methods

Convolutional neural networks (CNN) and high performance graphics process-

ing units (GPU) are now the standard for many computer vision tasks. It is

no surprise to see these techniques applied to fruit detection systems. Before

21

Figure 2.4: The autonomous, multi-purpose, mobile platform presented by

Jones et al. [75]. The AMMP is shown with pollination equipment mounted.

the rise of CNNs, detection methods were generally hand engineered or used

machine learning and traditional image processing techniques.

2.1.3.1 Hand Engineered

Before the popularisation of convolutional neural networks for object detec-

tion, fruit detection algorithms were either crafted manually or used machine

learning based classifiers with manually defined feature detectors. Most use

a colour filter designed to separate fruit pixels from background pixels as the

first step. Researchers have used many colour spaces including RGB [23,28,71],

HSV [19,20,52,62,62,63], YCbCr [50,51] and L*a*b [37,38,43,48] with some us-

ing a combination of multiple colour spaces [26,32,33,64,65]. Because of varia-

tion in fruit colour, light levels, lighting colour temperature and fruit maturity,

colour thresholds have to be kept wide to avoid false negatives. However, in

some cases, a lack of colour differentiation between fruit and foliage/branches,

means that wide colour thresholds will cause a high false positive rate. For

example, Wijethunga et al. report a segmentation system that uses a minimum

distance classifier on the a and b channels of the L*a*b colour space for use

22

detecting kiwifruit [38]. They show the system misclassifying some leaves and

wooden orchard structure as kiwifruit, due to the similarity in colour.

Nuske et al. presented an algorithm for detection of white grapes, where

there is little to no colour difference between the grapes and the leaves [29]. A

radial symmetry transform was used to identify potential locations of grapes

in images. Each potential point was then characterised using a 34-dimensional

vector consisting of colour and texture (Gabor filters) information. The k-

nearest neighbours algorithm was then applied to classify each point as a

grape or background. This approach is less reliant on consistent colours than a

simple colour filter method and was able to achieve a very high grape detection

precision of 98% across three grape varieties. However, recall was much lower

at 64%, caused by a high proportion of grapes not being identified by the radial

symmetry transform (61% of false negative rate).

Some researchers have utilised the strong specular reflections seen when

applying artificial lighting to fruit to aid detection [58, 59]. Linker and Kel-

man presented such an algorithm for use in detecting apples at night. Initially,

bright spots in the image are identified as the centres of regions of interest.

Each region is iteratively expanded by including adjacent pixels with a prede-

fined decreasing level of grey intensity. The geometry of the expanding region

is used to classify each region as an apple or background. In 60% of images,

the false positive fraction was 5–25%, while in 50% of images, the false neg-

ative fraction was 25–35%. False positives mostly occurred on leaves (90%).

False negatives were mainly due to partial occlusion (60%) and apples that

appeared too small in the images (25%).

Diago et al. presented a system that classifies pixels using the Mahalanobis

distance [30]. The system is applied to detecting grapes, leaves and branches

in vineyards. The user must first select pixels representative of each class from

a series of images. The algorithm will then classify pixels in new images based

on the Mahalanobis distance of the pixel to the labelled samples. The system

achieved an R2 value of 0.78 between leaf pixels and observed leaf area and

23

0.76 between grape pixels and harvest yield.

Wang et al. used a cascade classifier with histogram of oriented gradients

(HOG) features for mango detection [37]. The system first splits the image into

small boxes and calculates the orientation of the brightness gradient through

the box. The gradient orientations of a series of boxes are then used to classify

the area as a mango or not using a cascade classifier. As the authors were

estimating fruit size (as opposed to counting mangos), the algorithm was tuned

to have a very low false positive fraction by adding an ellipse fitting step. The

system was able to detect mangos with zero false positives, but a low true

positive fraction (77%) over a series of validation images.

For use in a kiwifruit harvesting robot, Scarfe developed a detection system

[13]. First a colour filter is applied to segment fruit coloured pixels then a Sobel

filter is applied to detect edges. Next, areas of the image that have more than

a set number of fruit coloured pixels around the perimeter of a fixed sized circle

are identified. Of those areas, those that do not contain enough edge pixels

within the circle are disregarded. From there, the distribution of edge pixels

is analysed. Only those with the majority of edge pixels distributed nearer

to the perimeter of the circle than the centre are kept. Finally, the aspect

ratio of the identified region is measured. Those near a 1-to-1 aspect ratio are

considered fruit. The system was able to correctly identify 69.55% of the 821

fruit in a set of test images. The system had a low false positive fraction at

only 1.83%.

2.1.3.2 Convolutional Neural Networks

Over the last five years, many researchers have based fruit yield estimation

systems around convolutional neural networks [22, 24, 35, 36, 39, 56, 60, 68, 70,

74,78,79]. Convolutional neural networks (CNN) such as ResNet [80], VGGNet

[81] and ZFNet [82] have proven far more robust to image variation than hand

engineered methods. Object detection frameworks such as YOLO [83], SSD

[84] and Faster R-CNN [85] can provide accurate locations of multiple instances

24

of fruit in an image. This has significantly improved detection accuracy and

largely solved the problems of image variation.

Bargoti and Underwood compared the performance of a multi-layered per-

ceptron (MLP) and a CNN for detecting apples [56]. The CNN was a custom

implementation built around work done on classification of electron microscopy

images and urban scenes. With both of the pixel wise segmentation algorithms,

they trailed the addition of image metadata such as sun position and tree type.

Both networks saw an improvement with the inclusion of metadata, but it was

negligible with the CNN. Overall, the CNN outperformed the MLP with pixel-

wise F1-score of 0.79 compared to 0.75 for the MLP. When both algorithms

were followed by a watershed detection algorithm to identify individual fruit,

the F1-score of the CNN was 0.86, compared to 0.84 for the MLP.

To continue their earlier work, Bargoti and Underwood applied Faster R-

CNN to detection of mangoes, almonds and apples [22]. The ZF and VGG16

networks were both applied and compared within Faster R-CNN with VGG16

performing slightly better. They achieved very good performance with an

F1-score >0.9 for both apples and mangoes (their previous method achieved

an F1-score of 0.86 on the same apple dataset [56]). Performance with the

almond dataset was lower than apples or mangoes which the authors attribute

to the small size of the almonds and large number of almonds in each image.

For both mango and apple detection, performance increased when the training

images were augmented via scale changes and orientation flips. Detection time

averaged 0.13 second per image when using 500× 500 pixel resolution.

Sa et al. built a capsicum detection system using Faster R-CNN [39]. Their

data had an NIR channel as well as the traditional RGB colour channels. They

tested two methods of combining the data for use with Faster R-CNN. The

first, which they call ‘early fusion’, inserted the extra channel at the input of

the CNN which was modified accordingly. The second method, ‘late fusion’,

consisted of two independently trained neural networks, one for colour and one

for NIR. The outputs of these two networks were combined to give the final

25

output. They compared these methods to both the RGB and NIR networks on

their own. The early fusion network performed slightly worse than the RGB

only network with F1-scores of 0.80 and 0.82 respectively. The late fusion

network performed the best with an F1-score of 0.84.

Rahnemoonfar and Sheppard used simulated images of tomatoes to train

a CNN they call DeepCount, to detect tomatoes in real images [79]. The sim-

ulated images consisted of randomly generated red-orange blobs on a mottled

green-brown background and subjectively, did not look much like tomatoes.

The CNN they used is a modified version of Inception-ResNet. They tested the

network on images of real tomatoes they found via Internet searches. They

authors claim an average accuracy of 91% on the real images compared to

manual counts.

Chen et al. used a fully convolutional network (FCN) to detect oranges and

apples [24]. The network used was that of Shelhamer et al. [86] which per-

forms pixel-wise semantic segmentation. When detecting apples, the network

achieved a true positive rate of 0.96 and false positive rate of 0.33.

Lamb and Chuah used Single Shot Multibox Detector (SSD) to detect

strawberries [67]. SSD can place bounding boxes around each instance of

a class in an image. It was trained with an Nvidia GTX 1080 Ti, starting

with pretrained weights. To increase the speed of inference, images were first

preprocessed and only the portions of each image that contained enough red

pixels were passed to the CNN. They were able to run their final network on

a Raspberry Pi 3B (Raspberry Pi Foundation, Cambridge, United Kingdom)

at 1.63 frames per second with an average precision of 0.842, which is very

impressive.

Halstead et al. used Faster R-CNN to detect capsicum [74]. To add ripeness

detection to the CNN, they tested two methods. The first was to use a class

for each of the three levels of ripeness they wanted to detect. The second

was to add a ripeness classification layer to the output of Faster R-CNN. The

multi-class approach gave poor results with F1-scores between 0.47 and 0.73

26

at intersection over union (IoU) 0.4, depending on the class. The ripeness

classification layer method performed better with an F1-score of 0.77 at IoU

0.4. Ripeness evaluation was correct in 63–94% of instances, depending on the

ripeness level.

Dias et al. used a hybrid approach to detect apple flowers [70]. Simple

linear iterative clustering (SLIC) was used to segment areas of input images.

SLIC is a superpixel segmentation algorithm that groups pixels using k-means

clustering based on colour and spatial proximity. Each segmented area is fed

into Clarifai CNN, which is a variant of ZFNet [82]. Rather than taking the

usual output of the network, they take the output of the first fully connected

layer, a 4096 dimensional vector. Principal component analysis is then applied

to reduce dimensionality to 69, which encapsulates approximately 94% of the

original variance. A support vector machine is then used to classify each

segment. The authors chose this approach as opposed to a system such as

Faster R-CNN as theirs can learn in an unsupervised manner. Their methods

achieved an F1-score of 0.82 on a validation dataset. When applied to peach

flowers with no modification, the system achieved an F1-score of 0.80, showing

the network generalises well.

Koirala et al. compared multiple versions of Faster R-CNN, SSD and YOLO,

as well as their own network, MangoYOLO, on detecting mangoes [35]. The

MangoYOLO network is a compromise between the larger, more accurate but

slower YOLOv3 and the smaller, less accurate but faster YOLOv2(tiny). Man-

goYOLO has 33 layers compared to 106 in YOLOv3 and 16 in YOLOv2(tiny).

Their testing showed MangoYOLO to be the most accurate with an F1-score

of 0.968, with Faster R-CNN scoring between 0.929 and 0.945 dependant on

configuration. SSD achieved an F1-score of 0.950 to 0.959 and YOLO between

0.900 and 0.951. When comparing inference speed, YOLOv2(tiny) was fastest

with an average of 10 ms per image. MangoYOLO averaged 15 ms, with Faster

R-CNN ranging from 37 to 67 ms. Overall MangoYOLO performed the best

with both a high F1-score and low inference time. The authors also compared

27

the training performance of Faster R-CNN on two sets of images of the same

mango orchard. One set of images was taken during the day while the other

at night with artificial lighting. Training converged faster when using the

night-time image set. The authors attribute this to the lower complexity and

greater consistency of the images in the night-time image set compared to the

day-time dataset.

Heinrich et al. compared Faster R-CNN, SSD and Region-based Fully Con-

volutional Network (R-FCN) for detection of grapes [78]. They trained each of

the networks with three classes; grape bunches, wooden structure and metal

structure. SSD performed very poorly with a mean average precision (mAP)

of 0.58 at IoU of 0.5. Faster R-CNN performed best with a mAP of 0.996 at

IoU 0.5, with R-FCN scoring 0.991.

Bellocchio et al. proposed a weakly supervised counting approach for mul-

tiple crops [68]. They tested both an end to end supervised counting algorithm

(S-COUNT) and a weakly supervised counting algorithm (WS-COUNT). S-

COUNT is based on the ResNet101 CNN with the final fully connected layer

replaced with a 1 × 1 convolution with eight filters. To train S-COUNT, im-

ages are provided with a label representing the number of fruit present in the

image. In contrast, WS-COUNT requires only a binary indication of the pres-

ence of at least one instance of a fruit for each image. WS-COUNT operates

at multiple levels, on the full image, on the image divided into quadrants and

on the image divided into 16 parts. Constraints are enforced to ensure the

count is consistent between levels. The advantage of both S-COUNT and WS-

COUNT over systems such as Faster R-CNN is the minimal labelling effort

required, particularly in the case of WS-COUNT. They compared their meth-

ods to that of Bargoti and Underwood (Faster R-CNN) [22], Rahnemoonfar

and Sheppard (DeepCount, modified Inception-ResNet) [79] and Zhou et al.

(PRM, a weakly supervised FCN for instance segmentation) [87]. The Faster

R-CNN approach was both the slowest to train and perform inference in most

cases. DeepCount and PRM were both very fast to train, taking less than an

28

hour, compared to 12 hours for Faster R-CNN, with DeepCount also being the

fastest to perform inference. Faster R-CNN was more accurate on all datasets

tested, while DeepCount and PRM were the least accurate. Both S-COUNT

and WS-COUNT demonstrated impressive performance given they require far

less labelling effort than the Faster R-CNN or DeepCount approaches.

Williams et al. used Faster R-CNN to detect kiwifruit flowers for the pur-

pose of pollination [76, 77]. The network was trained on 1015 images at a

resolution of 1024 × 600 pixels. The network achieved a precision of 0.91,

recall of 0.80 and F1-score of 0.85 across three test datasets containing a to-

tal of 211 images. The detection system was part of an automated targeted

wet pollen application system that managed a 61.8% hit rate of flowers when

travelling at 1 km/h.

In addition to kiwifruit pollination, Williams et al. also presented a robotic

kiwifruit harvester that uses a fully convolutional neural network called FCN-

8S [15]. The network was trained on 48 images of 200×200 pixel resolution to

perform semantic segmentation of images. The imaging system has a resolution

of 1920× 1200 pixels, so each image was spit into 12 sections which were each

passed through the network individually and the results recombined. Kiwifruit

calyxes, wires and branches were detected in images. In an evaluation across

a series of images, the system was able to detect 79% of visible fruit. In a

continuation of this work, Faster R-CNN was implemented to replace RCN-

8S [16]. The network was trained to detect both the fruit and calyxes. The

harvesting system used the calyxes as the target as the smaller size of the

calyx provides more positional accuracy with the stereo localisation system

used. The detection network achieved a precision of 0.95, recall of 0.85 and

F1-score of 0.90 on a series of evaluation images. The network was able to run

at 5 Hz on a GPU. The level of performance of Faster R-CNN was shown to

be much higher than FCN-8S in both detection accuracy and processing time.

In a 2018 review of deep learning in agriculture, Kamilaris and Prenafeta-

Baldú looked at 40 publications [88]. They found that deep learning tech-

29

niques offered superior performance, while requiring less effort to implement

than conventional image processing techniques in most cases. Faster R-CNN

and DetectNet CNN were highlighted by the authors as promising networks

for yield estimation. However, the authors point out that deep learning meth-

ods often require large datasets for training to represent sufficient diversity.

Obtaining these large datasets is an obstacle for many researchers.

Koirala et al. performed a review of deep learning methods for fruit detec-

tion and yield estimation in 2019 [89]. The authors note that with the high

accuracies reported for fruit detection using deep learning methods, research

attention should shift to approaches to estimate the total fruit per tree and

per orchard.

2.1.4 Occlusion Compensation Methods

The most commonly cited challenge faced by researchers in yield estimation

is occlusion. Fruit can be partially or fully occluded by leaves, branches and

even other fruit. Fully occluded fruit are not visible to the imaging system

and, hence, cannot be individually counted. Partial occlusions give the fruit

irregular shapes and sometimes split a fruit into multiple sections. A study

conducted by Williams et al. showed that 3.3% of kiwifruit were not visible

in images taken from below the canopy [15]. To combat occlusion, researchers

have tried many approaches; correction factors, taking multiple images of each

plant, tracking fruit through a series of images and more.

The simplest way to account for occlusion is with a correction factor. These

are usually obtained by regressing the fruit count produced by the algorithm

with the ground truth fruit count. These static correction factors have been

used by many researchers [18,23,29,32,44,55,56,61,73,90]. Applying a static

correction factor removes any under-counting bias and in most cases, signifi-

cantly improves yield predictions. However, applying a static correction factor

assumes that the occlusion rate is consistent across plants, rows, orchards and

vineyards. This assumption does not seem to be true.

30

To reduce the effects of occlusion some researchers have taken multiple

images of the same plant from different angles to see more fruit [50, 51, 59].

Linker took images of apple trees at three different heights from each side

of the tree [59]. Multiple models were formed to predict yield from different

combinations of images, such as all images from one side, only the lower and

upper images and all images from both sides. The best results were achieved

when using all of the images, very closely followed by using images from one

side. However, the testing was performed on a relatively small dataset (23

trees). The downside of taking multiple images of the same plant is the same

fruit being counted more than once.

2.1.4.1 Multi-frame Tracking

To avoid double counting of fruit seen in multiple images, a multi-frame fruit

tracking system can be used. A multi-frame fruit tacking system identifies the

same fruit in a series of images so it can be counted exactly once. Various

implementations have been used by researchers [19,20,28,36,45,60,74,76,78].

Moonrinta et al. tracked pineapples between frames taken from a moving

platform [45]. Pineapples were identified as the same pineapples in consecutive

frames if the detected areas overlapped. Structure from motion was then

applied across pairs of images to construct a point cloud of detected pineapples.

The authors note that their tracking algorithm needs improvement to better

handle merges and fragmentations. Also noted was the need to add GPS

and/or SLAM to resolve scale ambiguity and provide a 3D visualisation.

Wang et al. used a stereo pair of cameras mounted to a moving platform

with GPS to track apples [19, 20]. Each apple was seen in up to seven images

from each side of the row. Fruit were globally localised using GPS and stereo

triangulation. A distance threshold was used to determine if fruit seen in

different image pairs are the same fruit. GPS drift and stereo triangulation

bias were mentioned by the authors as issues, which were overcome by placing

landmarks in the images that were located by hand.

31

Gongal et al. located apples with an over-the-row system with a colour and

a time-of-flight camera [28]. The cameras were moved to different heights on

both sides of the row to capture multiple viewpoints of each tree. Apples were

detected in the colour image and localised using the time-of-flight image and

the position of the cameras. A distance threshold was used to merge fruit seen

from multiple viewpoints. The authors report a mean absolute percentage

error in identifying duplicate apples of 21%, which they attribute to clusters

and errors in 3D positioning.

Stein et al. used a single camera on a moving platform with a global po-

sitioning inertial navigation system (GPS/INS) to track mangoes [36]. Stereo

analysis was conducted between consecutive frames using the GPS/INS to es-

timate camera movement. The Hungarian method [91,92] was used for stereo

matching. Fruit were not associated in 3D after triangulation, instead a fruit

could only be identified as an existing fruit if it is seen in consecutive images.

If a fruit is visible, before being occluded and becomes visible again through

a series of images, it is counted as two fruit. The authors cite issues with the

epipolar geometry not being accurate when the platform hit a bump, causing

oscillations of the camera. They also mentioned issues with clustered fruit

being incorrectly matched.

Liu et al. tested both a hand-held camera and a camera on a moving

platform to track apples and oranges [60]. Camera movement was estimated

using optical flow with a Kalman filter. Fruit were stereo matched between

consecutive frames using the Hungarian method [91, 92]. The fruit were then

localised using structure from motion. A fruit was only counted if it was seen

in a series of images.

Halstead et al. and Herinrich et al. both used a similar approach to track

capsicum and bunches of grapes respectively from moving platforms [74, 78].

Their algorithms simply check for overlap between bounding boxes in consec-

utive images. If the overlap is above a threshold, they are considered to be the

same fruit.

32

Williams et al. tracked kiwifruit flowers using a pair of stereo cameras on a

moving platform for the purpose of pollination [76]. Flowers were detected in

each image pair, then stereo matched using the Hungarian method [91,92] and

localised relative to the cameras via stereo triangulation. Movement of the

cameras was tracked via odometry from the platform. For the next frame, the

new position of the previously seen flowers was predicted using the movement

of the camera. Newly localised flowers were then matched to previously seen

flowers using the Hungarian method.

2.1.4.2 Multi-fruit Region Classification

One of the issues caused by occlusion is overlapping fruit. When one or more

fruit are partially occluded by another fruit, detections systems can classify

the entire region as just one fruit. To overcome this issue, Gong et al. used

a modified 8-connectedness chain code (M8CCC) to identify the number of

fruit in a fruit region [71]. Their M8CCC algorithm encodes the outline of

an identified fruit region as a series of numbers. Each number describes the

direction of a section of the outline. The number of fruit in the cluster is

defined by the number of times a particular number appears in the generated

code. The M8CCC algorithm performed well on clusters of fewer than five

fruit, but failed in situations where a fruit region was intersected by a leaf or

branch.

Chen et al. used a neural network to infer the number of fruit in a cluster

[24]. The authors do not report the performance of their count neural network

in isolation. When included as part of a full yield estimation for oranges and

apples, performance was significantly improved compared to when it was not

used.

Tran et al. developed a custom algorithm for identifying the number of

dragon fruit in a cluster [42]. A binary image representing detected fruit

pixels is modified using a distance transform. The distance transform colours

each fruit pixel based on its distance to the nearest non fruit pixel. Adaptive

33

thresholds are adjusted iteratively to split each region into its constituent fruit.

In very limited testing, the algorithm performed well.

2.1.4.3 Other Occlusion Mitigation Techniques

Some researches have employed different strategies to reduce the effects of

occlusion. Nuske et al. took images of grape vines using a single camera from

a moving platform [46, 47]. The platform had a stereo camera pair facing the

ground which was used for visual odometry. Each detected bunch of grapes

was projected back onto the fruit wall. The row was split into chunks 0.5 m

long. For each chunk, if there were grapes detected in multiple images, only the

image with the most detections was used. All other detections were discarded.

This method makes the assumption that the image with the most detections

is the image least affected by occlusion. It avoids having to do registration

of grapes between multiple images, simplifying implementation. The authors

noted that the true positive counts are linearly related to actual grape count,

whereas false positive count is independent of actual grape count. They used

this to form a model to relate their counts to actual harvest weight.

Cheng et al. used a neural network to estimate apple yield [21]. For each

tree, a single image was taken. The image was segmented into fruit pixels,

foliage and background. The inputs to the neural network were the fruit area,

number of fruit, small fruit area and foliage area. The output of the neural

network was the total estimated fruit weight. The system performed well with

a mean absolute percentage error of 8.9% on a per tree basis.

To estimate the weight of bunches of grapes, Font et al. tested models based

on both grape area in images, and estimated grape bunch volume [64]. The

bunch volume method assumes that a bunch of grapes can be modelled by the

solid formed by revolving the grape area in an image about the vertical axis.

Both methods performed similarly in the small amount of testing the authors

conducted.

34

2.1.5 Conclusions

Fruit yield estimation systems have evolved from simple detect and count

approaches to complex systems based on CNNs with multi-frame fruit tracking.

However, further improvements need to be made to the state of art to provide

accurate information to growers on a commercial scale.

Colour cameras are inexpensive and offer high resolution and performance.

The addition of other sensors such as lidar or infra-red cameras have shown

small increases in yield estimation performance, however, they add significant

cost and complexity to the systems. Modern CNNs such as Yolo, SSD and

Faster R-CNN have demonstrated impressive performance across a variety of

conditions and crops and are the clear choice for vision based fruit detection

systems.

Occlusion is the biggest remaining problem faced for fruit yield estimation

systems. Taking multiple images of each plant can reduce the effect of oc-

clusion by providing multiple viewpoints, however, this introduces the double

counting problem. Multi-frame fruit tracking solves the double counting prob-

lem, provided a reliable fruit localisation method is implemented. The stereo

vision approach of Wang et al. and Williams et al. where a calibrated stereo

pair of cameras is used is a robust approach [19,20,76].

2.2 Sparse Stereo Correspondence

The stereo correspondence problem is identifying which objects in one image

of a stereo pair correspond to which objects in the other image. When only

discrete points need to be corresponded between images, it is sparse stereo

correspondence, which is the case for matching detected fruit.

Yuille introduced the stereo ordering constraint for stereo correspondence

problem [93]. If object A is to the left of object B in one image of a stereo pair,

object A will also be to the left of object B in the second image of the stereo

pair. This observation forms the basis of the ordering constraint. The system

35

allows the correspondence of multiple objects lying on the same epipolar line to

be correctly inferred. However, if there is not a 1-to-1 correspondence between

images, the system can produce incorrect results. This will occur if there is

occlusion in one of the two images causing some objects to be visible in only

one of the images. The constraint will also not hold if object B is inside of the

‘forbidden zone’, an area constrained by object A and the focal point of each

camera.

For use in an apple harvester, an area based matching algorithm was used

by Si et al. [94]. Detection was performed on each image and binary thresh-

olding applied to mark all apple pixels. Fruit were matched based on epipolar

geometry and finding detected fruit with similar area in each image. An order-

ing constraint was applied to ensure that matched fruit appeared in the same

order along the epipolar line in both images. The method achieved a 95% suc-

cess rate with the authors noting failures mostly caused by apples overlapping

in one image but not the other, causing differences in measured area.

To localise tomatoes and apples, a mean disparity approach was used by

Plebe et al. and Xiang et al. [95, 96]. First, a matrix was constructed that

contained the disparity of every possible matching combination. All values

that fell outside disparity thresholds (decided by the distance they expected

fruit to be from the cameras) were then removed. The mean disparity was

calculated and for fruit with multiple potential matches, the match with the

disparity furthest from mean was removed. This was repeated until only one

or zero matches were left for each detected fruit. Neither authors quantified

the performance of their systems.

Nielsen et al. used a trinocular camera configuration for localising peach

blossoms [97]. Their matching algorithm can utilise all three cameras or just

two, based on which combination gives the best quality match. To evaluate

matches, a fixed size window around a detected blossom was extracted and a

pixel-wise comparison conducted against detected blossoms in the other im-

ages. They performed the comparison at multiple window locations to find the

36

location of highest correspondence between the images. Their method is very

computationally intensive, taking 60–80 seconds per image pair, however they

were using very high resolution images (10 MP) and have a very high number

of blossoms per image.

For use in localising litchi, a grey-scale correspondence matching algorithm

was employed by Wang et al. [98]. All of the pixels belonging to a single litchi

in one image would be swept along the epipolar line in the other image. The

similarity of the grey value of the pixels in the two images was evaluated at each

point along the epipolar line using a normalised cross-correlation. A match

was declared at the point of maximum similarity. Their algorithm correctly

matched 98% of unoccluded litchi and 94% of partially occluded litchi. The

authors note the main reason for mismatching partially occluded litchi was the

shape of the litchi appearing to be different in the two images.

For use in a kiwifruit harvester, a reduced search space template based

algorithm was used by Scarfe [13]. A fixed size template was was taken from

each detected kiwifruit calyx and converted to grey-scale. For each calyx, a

search window was identified in the other image of the stereo pair based on

camera geometry and expected object distance. The template was then swept

through the search window and the sum of squared differences between the

overlapping patch of image and the template calculated for each position. The

position with the lowest sum was selected as the matching point, if it met a

set threshold. The author cites computation time as 14–26 seconds per image

pair. However this was run on a CPU from 2007 and programmed without

regard for computation time.

Williams et al. applied the Hungarian method [91,92] for matching of both

kiwifruit and kiwifruit flowers in a robotic harvester and pollinator [15,16,76,

77]. The success rate is only reported for the harvester, which achieved a very

high 99.7% matching rate.

37

2.2.1 Conclusions

The methods outlined above all produce acceptable matching accuracy when

used on their respective datasets. In particular, the Hungarian method used

by Williams et al. achieved impressive results [15, 16, 76, 77]. However, those

that reported computation times showed that their algorithms are very compu-

tationally intensive. This high computation time is due to many comparisons

being run on subsets of the images. With the relatively 2D nature of kiwifruit

orchards, a simpler algorithm could be applied that forgoes comparing features

of the image. Such an algorithm could offer both high accuracy and very low

computation times.

2.3 Point Cloud Registration

One of the problems of a multi-frame fruit tracking system is finding the cor-

respondence between fruit seen in different images. A method to solve this is

to use a point cloud registration algorithm. In the case of point clouds repre-

senting fruit, there is a high likelihood that two point clouds being registered

will not have a 1-to-1 correspondence. This is because point clouds will often

contain fruit that are not present in the other.

Besl and McKay presented the iterative closest point (ICP) algorithm [99].

The ICP algorithm is a cost function minimisation algorithm. The cost func-

tion is the sum of the squared distances between each point in the cloud being

registered and the closest point in the cloud being registered to. With each

iteration, a new transform is applied to the cloud being registered, which

shifts the points, optimising their position relative to the second cloud. The

algorithm will find the correct solution if the initial guess is relatively close.

However, if the initial guess is not close to the optimal solution, finding a local

minimum rather than the global minimum is likely.

To register two or more partially overlapping point clouds, Larkins pre-

sented a method based on analysis of estimated surface normals [100]. First,

38

the surface normal is estimated for each point in each point cloud. Then, for

each of the point clouds, a spherical-harmonic transform is applied to the set

of all normals. The spherical harmonics for each point cloud are then cross

correlated to identify the potential relative rotations of the point clouds. The

translation between the two point clouds is then determined using a 3D Fourier

phase correlation. The quality of alignment is then assessed and if adequate,

an iterative closest point algorithm is applied to improve the quality of regis-

tration. This method was shown to be effective at registering point clouds ob-

tained from 3D scans (or depth cameras) to reconstruct 3D objects. However,

performance on point clouds not representing surfaces was not investigated.

For registration of a dense point cloud with a sparse point cloud, Agamen-

noni et al. presented a modified version of the iterative closest point algorithm

(ICP) [101]. Their modification changes how data is associated between the

two point clouds with a system they call probabilistic data association. Each

point in the first point cloud is associated with multiple points in the second

point cloud, rather than just one as in the standard ICP algorithm. Each

of these associations is weighted to form a probability distribution. They

claim their system is more robust to both noise and outliers when compared

to standard ICP. When applied to registering points clouds from a 360° lidar

to those from a Kinect sensor (Microsoft, Redmond, Washington, USA), the

point clouds were registered correctly in all test cases.

2.3.1 Conclusions

Many 3D point cloud registration methods are designed for application on

dense point clouds. The point clouds representing fruit positions are sparse

point clouds that have between 0 and 100 points per cloud. Dense point

clouds obtained from depth cameras, lidar units and dense stereo systems con-

tain thousands or even millions of points. These dense point clouds represent

the surfaces of objects as opposed to the locations of discrete objects in a

scene as they do with fruit locations. Thus, many of the existing point cloud

39

registration algorithms are not suitable for this application. However, when

registering point clouds representing fruit, the point cloud is not the sole source

of information. The appearance of the fruit in the images could also be used

to aid the registration algorithm, improving accuracy.

2.4 Simultaneous Localisation and Mapping

Simultaneous localisation and mapping (SLAM) systems can both create a

map of an area, while localising an agent within that map. There are many

implementations of simultaneous localisation and mapping systems, each with

different specializations and capabilities. Various options are investigated to

find the most suitable for localisation of a vehicle in an orchard.

HectorSLAM is a SLAM implementation designed to perform real-time

estimates using lidar and, optionally, IMU data [102]. The Gaussian-Newton

algorithm is used to optimise a rigid transform for scan matching. To avoid

local minima, a multi resolution map approach is used.

GMapping is a SLAM implementation that uses a Rao-Blackwellized par-

ticle filter with an adaptive resampling technique [103]. GMapping is written

to take long-range lidar data and vehicle odometry to make its estimations.

Santos et al. performed an independent evaluation of multiple SLAM imple-

mentations and found GMappings accuracy and computational load to be

similar to that of HectorSLAM [104].

Cartographer is an open-source SLAM implementation developed by Google

(Mountain View, California, USA) that can be run in both a 2D and 3D

mode [105]. Estimations are based on lidar data with odometry and IMU data

being optional (IMU is required for 3D SLAM). Cartographer is split into two

systems. The first is a local SLAM system which produces small submaps.

These submaps are produced over a relatively short time period to avoid large

errors. The submaps are fed into the second system, where they are matched

and combined to form the global map and loop closure is performed.

40

All of the SLAM systems investigated are available with ROS integration,

making for easy software integration.

Chapter 3

Data Collection

The aim of the data capture system is to provide high quality data suitable

for use in estimating the position of each visible fruit in an orchard. It must

be robust and easy to use as the quantity of data required is very large (tens

of hours of data collection). The main form of data required is stereo images

of the kiwifruit canopy for detecting and localising kiwifruit relative to the

cameras. Also required are point clouds from a lidar unit and readings from

an inertial measurement unit (IMU) for estimating the position of the data

capture system within the orchard.

3.1 Data Capture System Hardware

The hardware of the data capture system consists of a vehicle, the various

sensors, laptop and mounting hardware.

3.1.1 Cameras

The canopy of pergola kiwifruit orchards sits between 1700 mm and 2100

mm from the ground. There are fruit outside of these limits: lower fruit are

prone to damage from machinery and are thus often graded as rejects by the

packhouse; higher fruit are often not harvested as they are both difficult to

see and reach. Therefore, the cameras on the data capture system need to be

42

Figure 3.1: The data capture system in an orchard.

capable of imaging fruit 1700-2100 mm from the ground.

The Ace acA1920-40uc (Basler, Ahrensburg, Germany) is a 2.3 MP colour

camera with a USB3.0 interface. It is used because it has the following fea-

tures/attributes:

Global shutter Due to camera movement while capturing an image, a rolling

shutter would introduce distortion to the images as different parts of the

image are captured at different points in time. A global shutter negates

this effect by exposing all pixels of the sensor simultaneously.

Hardware trigger Performing stereo analysis requires that images from both

cameras are taken simultaneously. Hardware triggering is used to achieve

accurate synchronisation.

GPIO The two general purpose input output pins can be used both as an

input or output for the hardware trigger.

Dynamic range The high dynamic range (73.2 dB) makes this model suit-

able for outdoor conditions.

43

120 120

750

Figure 3.2: Scale diagram showing camera spacing from the front. Stereo

baseline is 120 mm, separation between the two stereo pairs is 750 mm.

Resolution The 2.3 MP (1920 x 1200) resolution has been shown to be ade-

quate for detecting fruit [15].

The LM12HC (Kowa, Aichi, Japan), 12.5 mm lenses are used as they

provide the desired field of view (FOV) with the selected cameras (see Figure

3.3 below). They have an adjustable aperture from F1.4 to F16 and minimum

focal distance of 300 mm. A smaller aperture (higher F number) gives a larger

depth of focus while decreasing the amount of light captured by the sensor.

An adjustable aperture allows using the setting that gives the desired depth of

field, while allowing maximum light to the sensor. More light means shorter

exposure times, giving less blur as the images will be taken from a moving

vehicle. The FOV of the lens gives a resolution of approximately 1 mm/px at

the edge of the image at the highest working distance.

Four cameras are arranged as two stereo pairs to provide sufficient imaging

width. The base line for each of the stereo pairs is 120 mm (Figure 3.2). At

120 mm base line, the depth error is less than 10 mm per pixel of disparity

error over the working range. The separation between camera pairs is 750 mm

(Figure 3.2) giving overlap between the FOVs (Figure 3.3) of the two camera

pairs. The overall imaging width is 1840 mm at the lowest working height

(1700 mm from the ground).

The mounting position for the cameras should be as close to the ground as

possible. Being mounted further from the canopy reduces the change in viewing

angle from the centre of the image to the edges (given the same viewing area),

aiding kiwifruit detection and localisation accuracy. However, either longer

44

4
8

0
1

2
2

0

2
1

0
0

2240

1840

8
1

0Stereo
Pair 1

Stereo
Pair 2

Lidar

Figure 3.3: Scale diagram showing camera and lidar positioning from the front.

Gray triangles represent the field of view of each camera. The brown rectangle

represents the ground, the green rectangle represents the canopy. Note there

are four cameras arranged in two stereo pairs. Dimensions in mm.

exposure or more light is required for a similarly bright, well exposed image,

when compared with a higher mounting location. The cameras must also be

high enough to allow adequate ground clearance. A camera height of 480 mm

from the ground is used as a compromise between these factors (Figure 3.3).

Imaging every area of the canopy from multiple perspectives can reveal

occluded fruit that may not be visible from a single perspective. Therefore,

overlap is required between images. Taking an image every 200 mm of travel

will mean any area of canopy is seen in 3–4 consecutive images (disregarding

additional overlap between camera pairs or passes). When travelling at the

target velocity of 5 km/h (1.4 m/s), imaging at 7 frames per second gives an

45

image every 200 mm.

One of the four cameras is triggered via software at a rate of 7 frames per

second. One of the GPIO pins on the software triggered camera is configured

to be driven high when the camera is exposing an image. That pin is connected

to a GPIO pin on each of the other three cameras, which are configured as

a trigger inputs. Triggering all the cameras simultaneously ensures that all

of the cameras take an image at the same time, which is vital for processing

stereo images.

The focal distance of the lenses is set so that the working range is in focus.

The aperture of the lenses is set to 1.4 to give adequate depth of focus. Each

of the four cameras are configured identically (apart from one being software

triggered) to ensure consistent images. Exposure is set to 3 ms to give well

exposed images in orchards with the LED lighting. Automatic white balance

and gain adjustment is turned off to avoid inconsistencies.

3.1.2 Lighting

As kiwifruit orchards are outdoors, lighting conditions can vary significantly.

External lighting can reduce the effect of natural lighting variations, aiding

detection. Three LED light bars are used for the data capture system, one 40”

240 W and two 10” 60 W. The light bars have a colour temperature of 6000 K,

similar to that of daylight. The light bars are mounted alongside the cameras.

3.1.3 Lidar

The M8-1 (Quanergy, Sunnyvale, California, USA) is a 3D, mechanical lidar

with 8 layers. It is used because of budgetary constraints, not its features or de-

sign. Its FOV is 360° horizontally and 20° vertically, split asymmetrically with

the top layer 3° above horizontal and the bottom -17° below horizontal (Figure

3.4). The viewing area makes the Quanergy lidar suitable for mounting on top

of the vehicle. However, in a kiwifruit orchard environment, mounting sensors

above the vehicle is not practical due to the pergola structure. A symmetrical

46

Figure 3.4: The arrangement of lasers in the Quanergy M8-1 lidar shown from

a side view. The lasers rotate about the vertical axis. The red lines represent

the laser beams. The top laser is oriented 3° above horizontal, the bottom is

17° below horizontal.

vertical FOV, would be more suitable in a kiwifruit orchard to achieve max-

imum range of vision, despite uneven ground and other obstructions. Other

lidar units such as the VLP16 (Velodyne LiDAR, San Jose, California, USA)

or OS-1 (Ouster, San Francisco, California, USA) feature symmetrical verti-

cal FOVs and would be better suited to this application. A compromise is

to tilt the Quanergy lidar backwards 7°. The tilt gives an optimal FOV in

the forward direction at the expense of the rearward direction (Figure 3.5).

However, when mounted on the front of the ATV, the rearward direction is

blocked by the ATV and frame of the data capture system (Figure 3.6). The

FOV is unaffected on the sides (Figure 3.7).

The lidar is set to scan at its maximum of 20 Hz. Using a lidar scan rate of

20 Hz, as opposed to 10 Hz gives double the temporal resolution at the expense

of half the angular resolution (returned points per second is constant between

scan rates). The lidar returns data in packets containing 360° worth of data.

Because the lidar spins and captures points sequentially, each of the points is

measured at a different point in time. If the lidar is moving in space, the origin

(zero point) of the lidar is also moving. The movement causes the origin to be

in a different location for each of the measured points, distorting the resulting

47

7°

Figure 3.5: Lidar field of view from the side. The direction of travel is to

the left of the image. The lidar is tilted backwards 7°. This tilt gives it a

symmetrical vertical field of view about the horizontal axis in the forwards

direction.

212°

Figure 3.6: Lidar field of view from the top, looking down the axis of the lidar.

The direction of travel of the data capture is down in the image. The lidar is

blocked in the rearward direction by the frame of the data capture system and

the ATV. Total horizontal field of view is 212°.

48

Figure 3.7: Lidar field of view from the front. The field of view to the sides

is biased downwards due to the asymmetrical design of the lidar. The field of

view extends 3° above horizontal and 17° below.

point cloud. Using a higher scan rate minimises the effect of movement.

3.1.4 Other Sensors

The Life Performance Research LPMS USBAL2 IMU contains a 3-axis ac-

celerometer, 3-axis gyroscope and 3-axis magnetometer. It is used because of

its rugged aluminium housing, USB connectivity and availability of a Robot

Operating System (ROS) driver. The IMU is set to return measurements at

100 Hz. The reported measurements are; 3-axis linear acceleration, 3-axis

angular velocity, 3-axis magnetic field strength and an orientation quaternion.

Fitting a odometry measurement system to the ATV would provide ad-

ditional feedback for the ATV localisation system (SLAM, see Section 2.4),

which could improve localisation accuracy and robustness. However, the ad-

ditional cost and complexity of adding a reliable system, that doesn’t require

permanent modification to the ATV is deemed too high.

3.1.5 Mechanical Design

The data capture system is designed around a TRX500 ATV (Honda, Tokyo,

Japan). It is used because of budgetary constraints, not because of its feature

set.

The frame of the data capture system is designed to be easily removable

from, and require no permanent modification to, the ATV. The frame is con-

structed from laser cut sheet stainless steel and is mounted to the front carrier

49

of the ATV. It is designed to be assembled using bolts so it can be fully disas-

sembled or modified without any cutting or welding.

The frame consists of five main sections, as shown in Figure 3.8:

Front carrier mount (yellow) The main mounting point of the frame onto

the ATV. It is a panel with holes that align with the mounting holes in

the front carrier of the ATV. Power supplies and other required hardware

are mounted to it.

Struts (red) Two upright struts connect the front carrier mount to the cam-

era tray.

Camera tray (green) Holds the cameras, LED light bars and USB hub. It

also has protective shields for the cameras.

Lidar and IMU mount (purple) A bracket to hold the lidar and IMU out

the front of the ATV. It is angled back at 7° to optimise the FOV of the

lidar.

Laptop mount (blue) A bracket to hold the laptop in a convenient location

within reach of the operator.

3.1.6 Assembled Data Capture System

The assembled data capture system can be seen in Figures 3.9 3.10 3.11.

The following is a full list of the hardware on the data capture system:

Cameras 4x Ace acA1920-40uc, 2.3 MP, colour cameras (Basler, Ahrensburg,

Germany).

Lenses 4x LM12HC, 12.5 mm, F1.4, C-mount lens (Kowa, Aichi, Japan).

Lidar M8-1, 8 line, 360° FOV lidar (Quanergy, Sunnyvale, California, USA).

IMU LPMS-USBAL2, 9-axis accelerometer, gyroscope and magnetometer

(Life Performance Research, Tokyo, Japan).

50

Figure 3.8: A computer aided design (CAD) rendering of the sections of the

frame. Yellow is the front carrier mount. Red are the struts. Green is the

camera tray and camera shields. Purple is the lidar and IMU mount. Blue is

the laptop mount. Gray is the laptop, lights, cameras, lidar and light switches.

Figure 3.9: Overview of the components of the data capture system.

51

Figure 3.10: Overview of sensors on data capture system.

Figure 3.11: View from the operators seat of the data capture system.

52

ATV 2015 TRX500, 500 cc, IRS (Honda, Tokyo, Japan).

Laptop Thinkpad W541 Laptop (Lenovo, Beijing, China).

SSD SSD Plus 240 GB, 2.5” SSD (SanDisk, Milpitas, California, USA).

External drive bay USB 3.0 SATA docking station (Orico, Shenzen, China).

Light bars 1x 40” 240 W, Pro Line LED light bar, 2x 10” 60 W, Pro Line

LED light bar (LEDWAREHOUSE, Nevada, USA).

USB hub 4 Port, powered, USB3.0 hub (Basler, Ahrensburg, Germany).

Battery EPBLUE ED12-120S 12 V, 120 Ah battery (East Power Battery,

Shenzhen, China).

Inverter Generic 300 W, 12 V DC to 230 V AC inverter (for laptop charger).

DC-DC Converter 9–36 V to 24 V DC, 20 W, power converter (CUI inc.,

Oregon, USA) (for lidar).

Other Electronics Various cables, connectors, switches and fuses.

3.2 Data Capture System Software

The rosbag feature of ROS [106] is used to record the collected sensor data.

A rosbag records ROS messages, which each consist of a single sensor reading,

such as an image or a lidar scan, along with a timestamp. The resulting

output bag file can later be replayed using the playbag function of ROS or

the messages can be read directly via the rosbag C++ or Python APIs.

A Python script adds a label to the data at the start and end of every

row. The label contains both the row number and the pass number, for ex-

ample, begin row 4 pass 1 and is recorded as part of the rosbag. The script

requires the rider to press the space bar when entering or leaving a row and it

automatically increments the row number.

53

Figure 3.12: An example of an image used for camera calibration.

The laptop screen displays a visualisation of the data being collected in real

time. RVis (a ROS data visualisation tool) is used to show a representation of

the data capture system with the point cloud produced by the lidar displayed

around it. Images from each of the four cameras are shown sequentially so

any debris or water on the lenses or any other issues can be identified and

fixed. The current row and pass information is also displayed so any errors are

noticed.

3.3 Camera Calibration

The cameras are calibrated using the OpenCV checker-board pattern [107].

Images are taken of the checker-board in a range of positions and orientations

throughout the FOV of the cameras (Figure 3.12). The OpenCV functions

calibrateCamera and stereoCalibrate are used to produce the relevant ma-

trices describing each camera and the geometry of the two camera pairs.

54

3.4 Data Collection Method

Orchards mature at different times, based on geographical, weather and other

factors. Ideally, all orchards would be visited at the same point in their matu-

rity cycle to ensure consistency. However this is not possible due to issues such

as weather, transport logistics and orchard access restrictions. All practical

efforts are made to minimise the range of times between bud break/fruit set

and data capture.

Before starting each block, the orchard name and block number is entered

into the data capture software. The system is aligned with the start of the

first row. The data capture software is started via a roslaunch command.

The lidar is given time to start up (approximately 10 seconds) and the data

checked via the on screen visualisation. The space bar on the laptop is pressed

to insert a row and pass label into the data. The ATV is ridden down the first

row at 5 km/h (1.4 m/s) as measured by the speedometer on the ATV (which

reports in 1 km/h increments).

The turning radius of the ATV is too large to comfortably turn from one

row directly into the next without doing a three point turn. Therefore, the

system is taken down every second row, before returning to cover the skipped

rows (Figure 3.13).

The imaging width of the data capture system is approximately 2 m (de-

pendent on canopy height), which is less than the width of each row. Each

row is navigated three times, each referred to as a ‘pass’ from henceforth. One

pass is taken down each side of the row and one down the middle (Figure 3.13)

to give full coverage in rows up to 5.4 m wide.

A clipboard with an orchard map, paper and a pen is carried on the ATV

to record notes. Noteworthy things include:

• Any mistakes in data labels caused by human error;

• Weather conditions

• Stoppages in data capture for any reason;

55

1 23 45 6

Figure 3.13: Order of passes. Black dots represent the posts and trunks border-

ing each row. Numbers represent the order of passes and the starting location

for each pass.

56

– Issue with the ATV

– Curious orchard managers/owners/workers

– Cleaning water/debris off sensors

• Anything out of the ordinary;

– Particularly long grass

– Strange or collapsed orchard structure

3.5 Collected Data

Data is collected twice in the growing season. Once at bud stage and once at

fruit stage. Different orchards were covered in the two data capture runs.

Bud data was collected between October 13th and November 7th, 2017

(Figure 3.14). Seven each of green and gold maturity areas were included. A

growing area of 20.4 Ha was covered across 14 maturity areas (Table 3.1). All

orchards are managed by GroPlus Ltd and use the pergola growing system.

Each orchard was visited between 34 and 43 days after bud break.

Fruit data was collected between January 24th and February 6th, 2018

(Figure 3.15). Only green orchards were included (see Section 4.2.2). A grow-

ing area of 33.9 Ha was covered, spread across 16 maturity areas (Table 3.1).

All orchards are managed by GroPlus Ltd and use the pergola growing system.

Each orchard was visited between 64 and 69 days after fruit set.

The fruit data is split into training, validation and testing datasets (Table

3.2). Ten maturity areas are randomly placed in the training dataset, with

three each in the validation and testing datasets. Only data from the training

dataset is used for development of all systems and algorithms. The validation

dataset is used only for setting of final yield prediction model parameters. The

testing dataset is used only to test the accuracy of the full yield estimation

system once all other research and development is complete.

57

Figure 3.14: An example of an image from the bud dataset. The small round

objects are the buds.

Figure 3.15: An example of an image from the fruit dataset.

58

Buds Fruit

Maturity Areas 14 16

Orchard Area 20.4 ha 33.9 ha

Orchard Blocks 34 47

Hours of Captured Data 33 52

Coverage Rate 0.62 ha/h 0.65 ha/h

Images 3.3 million 5.1 million

Lidar Scans 2.4 million 3.7 million

Total Data 2.5 TB 3.9 TB

Table 3.1: Statistics of captured data.

Maturity Area Dataset Capture Date (days after bud break) Size

G A Validation 2018-01-24 (68) 3.29 Ha

G B Training 2018-01-24/25 (68/69) 3.67 Ha

N A Training 2018-01-26 (64) 2.07 Ha

R A Testing 2018-01-27 (64) 2.88 Ha

S A Training 2018-01-29 (65) 1.70 Ha

M A Validation 2018-01-29 (64) 1.23 Ha

H A Testing 2018-01-30 (64) 1.69 Ha

A A Training 2018-01-31 (64) 1.57 Ha

P A Training 2018-02-04 (67) 0.41 Ha

P B Validation 2018-02-02 (65) 2.52 Ha

P C Training 2018-02-04 (67) 2.44 Ha

K A Training 2018-02-06/07 (65/66) 1.74 Ha

K B Training 2018-02-08 (67) 2.84 Ha

K C Testing 2018-02-06/07 (65/66) 2.63 Ha

K D Training 2018-02-06 (65) 1.11 Ha

K E Training 2018-02-06 (65) 2.12 Ha

Table 3.2: Information on captured fruit data. Note, orchard names are ob-

fuscated for privacy reasons.

59

3.5.1 Data Capture System Issues

Using the data capture system in the field highlights a number of issues with

its design.

The camera tray is not visible from the riding position making it difficult

to judge its position relative to posts, trunks or deadmen (knee height posts in

the ground at the ends of rows). In 85 hours of data capture, there was only

one significant crash, but it caused minimal damage.

The screen of the laptop extends outside the normal width of the ATV leav-

ing it venerable to damage from trunks and low hanging canes. The screen sus-

tained damage on multiple occasions, therefore, a protective plate was added.

The seat height of the ATV is relatively high. The seat itself is modified to

lower the height of the rider. However, in orchards with low canopies or with

low hanging canes or fruit, the riders head is in danger. Therefore, a helmet

is required.

The ATV does not have cruise control. Maintaining a steady velocity is

the job of the operator. The result is some fluctuations in velocity and after

many hours of data capture, hand fatigue.

3.6 Ground Truth Data

To obtain ground truth data, all visited orchards are harvested, graded and

packed by a commercial packhouse using industry standard techniques and

processes. No special treatment is given to the fruit that are part of this study

as the orchard workers and packhouse operators are not aware of the study.

The packhouse produces a packout report (as they do for all orchards), from

which the ground truth data is taken. The packout report provides a summary

of the fruit that reach the packhouse. One packout report is produced per

maturity area (some orchards consist of multiple maturity areas). For class one

fruit (export quality fruit), the number of trays of each count size is reported.

For class two (local market fruit), and waste fruit, the total weight of fruit is

60

reported. An example packout report is shown in Appendix A.

Using data from the packhouse allows yield estimation trials to be con-

ducted on a scale that would be otherwise impractical. However, there are

steps in the growing process between yield estimation and packing. For ex-

ample, some orchard managers may thin fruit (remove unwanted fruit) during

this time. Also, orchard workers are instructed to throw away any damaged

fruit while harvesting, meaning they will not be counted by the packhouse.

Additionally, a proportion of the fruit is left on the plants after harvesting as

it is not visible to the orchard workers due to occlusion. Any variation between

orchards introduced by these steps cannot be accounted for. Therefore, the

overall accuracy achievable by the yield estimation system is limited by this

variation.

To compare the accuracy of the final fruit yield estimation system to the

current manual method, the manual counts are required. An attempt was

made to obtain the manual counts performed by professional yield estimators

after the growing season had finished. However, it was discovered that this

data was not recorded by orchard managers. This oversight makes useful

comparison of the two methods impossible. Attempts were also made to obtain

data on the economic model of the current manual method of counting. Upon

contacting multiple growers and orchard managers, it was discovered that there

is little consensuses on prices, time taken and proportion of fruit counted. This

uncertainty combined with the prototype nature of the presented automated

system make economic comparison unfeasible.

61

Figure 3.16: Data collection going well.

Chapter 4

ATV Localisation

Knowing the position and orientation of the ATV within the orchard at all

times simplifies the multi-frame fruit tracking system. Other researchers de-

veloping fruit yield estimation systems have relied on GPS for vehicle/cam-

era localisation [18–20, 36, 40, 41, 44, 56, 63, 73, 108, 109]. However, the pergola

growing system and tall shelter belts of modern kiwifruit orchards can cause

occlusion issues with GPS, making it an unreliable solution [75]. Implementing

a simultaneous localisation and mapping (SLAM) algorithm is an alternative

solution that can both map an orchard and localise the ATV within that map.

The inputs to a SLAM algorithm are a series of measurements from sensors

such as lidar, depth cameras, inertial measurement units (IMUs), ultrasonic

sensors, radar and vehicle odometery. The output is a map of the traversed

area, often in the form of an occupancy grid, and a trajectory of the vehicle

through the map. These outputs are computed by matching each new sensor

measurement with the previously seen measurements using cost functions and

statistical techniques such as Kalman filters and particle filters. An example

output can be seen in Figure 4.1. An example of the lidar input can be seen

in Figure 4.2

The ATV data collection system has a 3D lidar and an IMU, but no odom-

etry feedback. Not having odometry restricts the choice of SLAM algorithm

to those implementations that can be run using lidar and IMU data alone.

63

Figure 4.1: An occupancy grid produced by SLAM representing a top down

view of one end of an orchard block. Black areas represent occupied areas,

which in this case are the trunks, posts, low hanging parts of the canopy and

shelter belts of an orchard. The blue line is the computed trajectory of the

ATV through the map, which begins in the top left and finishes in the bottom

left. Note the image has been cropped on the right for clarity.

64

Figure 4.2: A top down view showing the points from a single scan from the

lidar. The data collection system can be seen centre left and is travelling

towards the right of the image. The line of points along the bottom of the

image is a shelter belt. The points surrounding the data capture system are

mostly from the ground. The approximate grid of points seen in the upper

right of the image are the posts and trunks. The reference grid spacing is 1 m.

65

Cartographer [105] is selected for use because it is does not require odometry,

is the most modern of the systems and is capable of 3D SLAM.

Cartographer is used in 2D mode, which means that it assumes the en-

vironment is flat. This is not strictly true in kiwifruit orchards as many are

on uneven terrain. However, the reduction in computational complexity out-

weighs the minor reduction in accuracy.

4.1 Point Cloud Filtering

In each scan produced by the lidar, there are many points that correspond

to either the ground or the canopy. When using Cartographer in 2D mode,

these points are not useful to the SLAM system as they represent planes that

are parallel to the plane of travel. Although these ground and canopy points

do not appear to significantly effect the accuracy of the maps, including them

slows computation. Therefore, an algorithm to filter these unnecessary points

is implemented.

The filtering system consists of two filters both designed to identify points

representing vertical features (posts, trunks, shelter belts etc.). Both of the

filters are tuned to reduce false negatives (classifying a vertical feature as

horizontal). The first filter is a surface normals filter which uses an estimated

surface normal to classify each point. The second is a nearest neighbour filter

which classifies points based on the number of nearby points. The outputs

of the two filters are concatenated to produce the final filtered point cloud

(Figure 4.6) that is fed into Cartographer.

4.1.1 Surface Normals Filter

The operating principal of the surface normals filter, is that the normal vector

to a vertical surface will be oriented horizontally and vice versa. To estimate

a surface normal for each point the NormalEstimationOMP function in Point

Cloud Library [110] is used. The NormalEstimationOMP function analyses

66

all points within a specified search radius of the point being analysed, fits a

surface to the points, and computes the normal to that surface. Only the z

(vertical) component of each estimated surface normal is used for classification.

The z component will be near zero if the estimated surface normal is oriented

horizontally. If the z component of a surface normal lies within a set interval,

the point is classified as representing a vertical feature and is kept.

To find an appropriate search radius for the surface normal filter, the point

cloud is visualised with each point coloured based on the vertical component

of the estimated surface normal. The search radius is then varied to maximise

the difference between horizontal surfaces (ground and canopy) and vertical

surfaces (posts, trunks and shelter belts). The optimal search radius is found

by subjective evaluation to be 0.8 m.

To set the limits for the surface normal filter, the estimated surface normals

for 5000 complete lidar scans (approximately 16 million points) are plotted on

a histogram (Figure 4.3). There is a cluster of points with surface normals

pointing upwards (right side of histogram) which are from the ground. The

points with a surface normal pointing downwards (left side of histogram) are

from the canopy. There are fewer points from the canopy than the ground

because the field of view of the lidar is biased downwards (Chapter 3). Limits

are set at -0.8 and 0.7, to minimise false negatives.

As an object is moved further away from the lidar, the number of lidar

points on that object decreases. With the Quanergy M8 lidar (as used on

the data capture system), the resolution decreases in the vertical direction

much quicker then in the horizontal direction (Figure 4.4). In the vertical

direction there are 8 layers spaced at 2.85° whereas in the horizontal direction

a measurement is taken every 0.12°. At a distance of 15 m from the lidar, the

distance between layers (vertical resolution) is 0.75 m, which is approximately

half the height of the canopy in some places. Therefore, in some cases, only

points from one layer of the lidar will correspond to trunks and posts further

than 15 m away. A surface normal estimated using only points from one

67

Figure 4.3: Histogram of the vertical component of estimated normal vectors

for 5000 lidar scans. The small spike on the left is from the canopy (surface

normal points downwards). The large spike on the right is from the ground.

Orange bars are wihtin the set limits to be considered to belong to vertical

surfaces, blue bars are not.

lidar layer, will always be near vertical as all the points lie on a plane that

is near horizontal. Hence, the accuracy of the surface normals filter decreases

significantly with range. To overcome this, a second filter is added.

4.1.2 Nearest Neighbour Filter

When only one horizontal lidar layer hits an object, variations in the surface

of the object will cause smaller changes in measured distance when the object

is oriented perpendicular to the lidar compared to at acute angles. Therefore,

tight clusters of lidar points at a medium to large distance from the lidar (>12

m) are more likely from a vertical surface than a horizontal surface.

The nearest neighbour filter is an adaptive cluster detector. It is adaptive

because the threshold for classification of a cluster is dependant on distance

from the lidar.

For each point further than 12 m from the lidar, the number of points

within a set radius of that point are counted. If the number of nearby points

is greater than or equal to a threshold, all of those points are classified as

68

Figure 4.4: Horizontal versus vertical resolution for the Quanergy M8 lidar.

The horizontal resolution is much higher than the vertical resolution.

representing a vertical surface. The search radius is 0.25 m, found by ubjective

evaluation, and is orchard independent. The formula for the threshold for

cluster classification is shown in Figure 4.5.

At 42.5 m from the lidar, the horizontal resolution of the lidar is 100 mm.

This is approximately half the width of posts and trunks, meaning, a post or

trunk at this distance may only have one lidar point hitting it. Therefore, any

points further than 42.5 m from the lidar will be classified as vertical to avoid

false negatives.

The combination of the two lidar filters significantly reduces the number

of points, decreasing processing time. An example of the lidar filtering can be

seen in Figure 4.6.

4.2 SLAM Parameter Tuning

An orchard environment does not contain flat, solid surfaces like walls or floors.

Instead they consist of uneven ground covered in long grass, kiwifruit foliage

and shelter belts. These surfaces cause noise in lidar measurements as a slight

perspective change can be the difference between the lidar sensing a shelter belt

or seeing right through it. Therefore, the SLAM output quality in an orchard

69

Figure 4.5: The neighbour threshold for the nearest neighbour filter over dis-

tance. Points closer than 12 m are excluded from this filter. Points further

than 42.5 m will always be classified as vertical as the threshold is 1 point (the

point being analysed is included in the count). The ceil (ceiling) function

rounds a number up to the nearest integer.

will be inferior to that from a structured urban or indoor environment. Tuning

of the SLAM system is also more difficult.

Cartographer has many parameters that must be tuned to suit the envi-

ronment and sensors being used. These range from the resolution of the maps

produced to the maximum number of iterations for various optimisation steps

to the weights used in cost functions. To find the optimal parameters for Car-

tographer, SLAM is run on all of the orchard blocks in the training sets of

both the fruit and bud datasets. The quality of SLAM output is evaluated

for each of the orchards. The process is then repeated with new parameters

until a parameter set that produces acceptable results over all of the training

orchard blocks is found. More information on the tuning of Cartographer can

be found in the tuning guide1.

1https://google-cartographer-ros.readthedocs.io/en/latest/tuning.html

70

Figure 4.6: A top down view of a single lidar scan. The ATV is shown in the

middle left. Red points are those rejected by the filtering system. Blue points

have been identified as representing vertical features by the surface normals

filter. Green points have been identified as representing vertical features by

the nearest neighbour filter. The line of green points along the bottom are

from a shelter belt bordering the orchard block. Most of the other green and

blue points represent trunks and posts. Reference grid spacing is 1 m.

71

4.2.1 SLAM Quality Evaluation

Due to the lack of GPS or any other external reference that can be used as

ground truth, evaluation of the SLAM output is subjective and conducted by

inspection. To reduce the subjectivity of evaluation, criteria ware developed

to classify SLAM output as acceptable or unacceptable. An acceptable SLAM

output will have the following attributes:

• Trajectory lines are parallel to each other, evenly spaced and do not

intersect each other or the rows of trunks and posts. Exceptions to this

are when the ATV is turning at the end of rows, or when obstacles in

the orchards are avoided.

• Objects in the orchard (trunks, posts, shelter belts etc.) appear well

defined and black in colour in the occupancy grid (grey represents un-

certainty) without ‘ghosting’. Ghosting is when an object is represented

more than once in the SLAM output.

An example of acceptable SLAM output can be seen in Figure 4.7. An

example of small errors in trajectory, ghosting and hence, unacceptable SLAM

output are shown in Figure 4.8. An example of large errors in both trajectory

and ghosting is shown in Figure 4.9.

4.2.2 Shade Cloth Occlusion

Some growers install shade cloth between some of the rows (usually every 2–3

rows) of their orchards (an example can be seen in Figure 4.10). The shade

cloth creates a series of ‘hallways’, each a few rows wide, where the lidar cannot

see into the adjacent hallway. As the ATV is driving down each hallway, the

SLAM system must dead reckon the ATV’s position based only on reference

points in the current hallway. Small errors accumulate down the length of

the hallway and, if large enough, cannot be corrected by the loop closure

system built into Cartographer. For orchards with short rows (less than 100

m), acceptable SLAM output is achieved with well tuned SLAM parameters.

72

Figure 4.7: An example of acceptable SLAM output. Trajectory lines are

parallel to each other, evenly spaced and do not cross over each other (apart

from when turning at the end of rows). Posts, trunks and other features are

well defined with no ghosting. Note only a section of the orchard is shown for

clarity.

73

Figure 4.8: An example of unacceptable SLAM output. Panel A shows the

entirety of the SLAM output. Panel B shows a section containing trajectories

that are not parallel to each other and cross over each other and a row of

trunks. Panel C shows a section with ghosting, particularly in the right side

of the image. Many of the features are grey in colour and can be seen twice.

74

Figure 4.9: An example of unacceptable SLAM output. Severe ghosting can

be seen with the entire map seen twice due to a rotation error. Trajectories

are not parallel to each other and overlap in multiple locations.

75

Figure 4.10: An example of an orchard with shade cloth between every second

row. The shade cloth is the white material.

However, in orchards with longer rows (100–240 m) acceptable SLAM is not

achieved.

The shade cloth occlusion issue is discovered between bud data collection

and fruit data collection. Therefore, only orchards free of shade cloth are

visited for fruit data collection.

Experiments comparing the effects of shade cloth occlusion with the VLP16

(Velodyne LiDAR, San Jose, California, USA) lidar to the Quanergy M8 lidar,

used for the rest of data collection, are conducted (Figure 4.11). Additionally,

experiments are conducted with a lidar mounted to the rear of the ATV to

provide more data to the SLAM system. However, these experiments are inter-

rupted by unrelated hardware issues and could not be resumed due to limited

availability of the additional lidar sensors. The experiments did show that

the VLP16 lidar is less effected by shade cloth occlusion than the M8 (Figure

4.12). The additional reference points from beyond the shade cloth should

result in higher quality SLAM output. However, because of the interruptions

to the experiments, definitive conclusions cannot be drawn, and this problem

is left for future work.

76

Figure 4.11: Side view of the Velodyne VLP16 lidar mounted above the Quan-

ergy M8 lidar. Experiments are conducted to evaluate the effect of shade

cloth occlusion with different lidar sensors. Note, the M8 is tilted backwards

7° whereas the VLP16 is mounted horizontally due to the symmetrical vertical

field of view of the VLP16.

77

Figure 4.12: Top down view of lidar point clouds with multiple lidar sensors.

The ATV is shown near the centre of the image. Red points are from the

Quanergy M8 lidar used for all data collection. Green points are from a Velo-

dyne VLP16 mounted above the Quanergy lidar. Blue points are from a second

Velodyne VLP16 mounted on the rear of the ATV. The shade cloth can be

seen in the lidar points above and below the ATV. Reference grid spacing is 1

m.

78

Parameter Primary Alternate

use imu data true false

num accumulated range data 4 5

motion filter.max time sections 5 0.5

motion filter.max distance meters 1 3

motion filter.max angle radians 10° 3°

submaps.num range data 450 75

optimize every n nodes 500 50

num subdivisions per laser scan 1 1

use online correlative scan matching true true

submaps.resolution 0.3 0.3

Table 4.1: The key configuration parameters used for Cartographer. Values

that are different between the primary and alternate configurations are shown

in bold.

4.2.3 Final SLAM Configuration

A single set of parameters that produces acceptable SLAM output across all of

the training orchard blocks (excluding those with shade cloth between rows)

could not be found. Instead a primary and an alternate parameter set are

implemented. The primary set produces acceptable SLAM output in 40 of the

43 training blocks. The alternate parameter set produces acceptable SLAM

in 39 of the 43 training block, but more importantly, produces acceptable

SLAM output on the 3 blocks that the primary parameter set did not. The

key parameters and differences between the primary and alternate parameter

sets are shown in Table 4.1. An analysis of the results could not identify a

single reason why one parameter set performed well in most orchards, but not

in others.

79

Figure 4.13: An example of acceptable SLAM. The black dots represent trunks

and posts. The lines bordering the orchard on the top, bottom and left are

shelter belts. On the right are trees, a shed and a house.

4.3 SLAM Evaluation

Cartographer is run on each of the orchard blocks from the fruit dataset (train-

ing, test and validation datasets) using the primary parameter set. The quality

of the SLAM output is evaluated using the criteria detailed in Section 4.2.1.

For those blocks where acceptable SLAM output is not produced, Cartogra-

pher is run again with the alternate parameter set. Quality of SLAM output is

again evaluated. Acceptable SLAM output is produced for all orchard blocks

from the fruit dataset.

Chapter 5

Canopy Density

The density of the canopy is one of the factors that may contribute to variation

in occlusion rate. Intuitively, higher foliage density should result in a higher

rate of occlusion. Measuring the foliage density directly is difficult without

additional sensors. Therefore, as a proxy for canopy density, the ratio of sky

pixels to canopy pixels is estimated.

5.1 Sky Detection Algorithm

Sky pixels are distinct from canopy pixels as they are bright and have a high

blue component. A simple colour threshold in the RGB colour space can

distinguish between sky and canopy. The following thresholds are found by

trial and error:

R > 100

G > 100

B > 235

The binary threshold is followed by a morphological close with a 3× 3, ‘plus’

shaped kernel:

0 1 0

1 1 1

0 1 0

81

Figure 5.1: An example of sky detection. Panel A shows the raw image. Panel

B shows the output of the sky detection algorithm, where white is sky.

The total number of white pixels is then counted and divided by the total

number of pixels in the image to give a canopy coverage percentage. The

algorithm is applied to all images taken within rows of an orchard block. The

mean of all canopy coverage values from an orchard block is taken.

An example of the sky detection is shown in Figure 5.1. The white sections

in panel B show the regions of the image identified as sky.

5.2 Evaluation Method

Sky pixels are manually labelled in a random selection of 17 images from the

fruit training dataset using the Labelbox labelling tool1. The images are taken

in a variety of weather conditions. Some images have the sun directly overhead,

some are overcast, some have clear blue sky. However, none of the images are

taken in low light conditions (dawn, dusk, night-time) as all orchard data was

collected during the day.

When labelling sky pixels in images there is ambiguity. Precisely classifying

each pixel as either sky or background is a difficult and time consuming task,

even for a human. Approximations are made to represent each area of sky

with a polygon (Figure 5.2).

A logical XOR operation is applied to the ground truth and algorithm

produced sky masks to identify incorrectly classified pixels. The number of

1https://www.labelbox.com

82

Figure 5.2: A section of an image showing ground truth sky labels. The red

outlined areas are the sky labels. Note the approximations made and the

ambiguity around the edges of the labelled areas.

mismatching pixels is counted. Results are averaged across all of the images

in the evaluation set.

The processing time is measured across the evaluation images. The CPU

used is a Xeon E5-1650 v3 (Intel, Santa Clara, California, USA). Image loading

is not included in the timing, only calculating the canopy coverage percentage

from a preloaded image.

5.3 Results

Across the 17 evaluation images 0.57% of all pixels are misclassified (Table 5.1).

A typical example of sky detection is shown in Figure 5.3. Panel D shows each

pixel as a true positive, true negative, false positive or false negative.

Processing time is 5.3 ms per image. With 28 frames captured per second

(7 frames per second on each of 4 cameras), this equates to 148 ms of processing

time per second of captured data. However, this does not take into account

83

Images 17

Misclassified 0.57%

True Positives 6.74%

True Negatives 92.69%

False Positives 0.25%

False Negatives 0.33%

Sensitivity 0.95

Specificity 1.00

F1-score 0.96

Processing Time 5.3 ms (per image)

Table 5.1: Sky detection evaluation statistics on a per pixel basis. Percentages

are expressed as a percentage of the total number of pixels.

Figure 5.3: Sky detection evaluation. Panel A shows the raw image. Panel B

shows the ground truth, where white is sky. Panel C shows the output of the

sky detection algorithm. Panel D shows true positives in green, true negatives

in black, false positives in red and false negatives in white.

84

multi-threading which is implemented for use in bulk processing of images.

The majority of false negatives are around the edges of sky areas. This

is due to the ambiguity and approximations made in the ground truth labels

(Figure 5.2).

The main cause of false positives is direct sunlight reflecting off of branches

or stems. The intense reflections are very bright spots in the images that are

misclassified as sky. An example is shown in the upper centre of the images

in Figure 5.3. However, these reflections represent a very small percentage of

the overall image and thus have a small impact on accuracy.

The algorithm would likely fail in low light conditions as it relies on the

sky being bright. A more robust approach would be required if this system is

to be used at night.

The algorithm takes a simple approach to averaging over a block with each

image being equally weighted in the final average. Therefore, variations in

overlap between images are not taken into account. Image overlap variations

can be caused by varying row widths, inaccuracies in pass trajectory and vari-

ation in vehicle speed. For example, in an extreme case, the vehicle may be

stopped for a period of time underneath a hole in the canopy. Images are still

being captured while the vehicle is stationary and the algorithm will give them

equal weighting when calculating the canopy coverage average for the block.

Thus the calculated average will be lower than it is in reality. For the data

captured for this study, this kind of biasing is not expected to be an issue

as significant stoppages are not present in the data. However it should be

considered for future work.

The algorithm is also susceptible to errors in row labels. The timing of a

row start or row end label is subjective as it is controlled by the operator

at time of data capture. If, for example, a row start label is placed prema-

turely, images taken before entering a row will be used in the canopy coverage

calculation. The result is a calculated average that is lower than it is in real-

ity. This could be overcome by implementing an automated in-row detection

85

Figure 5.4: The canopy density of an orchard block shown from a top down

view. Red areas represent gaps in the canopy, dark blue represents dense

canopy. The black features are the trunks, posts, shelter belts, fences, trees

and other features as mapped by the SLAM system.

system rather than relying on the operator to correctly place labels.

5.4 Canopy Density Maps

Using the trajectory output obtained from SLAM (Chapter 4), the canopy

density can be represented spatially over each block. This gives growers an

insight into their orchards and can be used to identify areas of canopy that need

attention. An ideal orchard has a consistent and dense canopy for maximum

light absorption and growing area. An example can be seen in Figure 5.4 where

multiple large gaps in the canopy can be easily identified (red spots).

The accuracy of the canopy density map in Figure 5.4 is verified by taking

it into the orchard and comparing the map and orchard. There is a clear

correspondence between the two with even the small holes shown on the map

being visible in the orchard. A more through validation of the accuracy would

be a time consuming task and is outside of the scope of this work.

Chapter 6

Kiwifruit Detection

The kiwifruit detection system is the foundation of the yield estimation system.

A high performing detection system is able to reliably detect fruit across a

variety of lighting conditions, fruit sizes, shapes and distances from the camera.

6.1 Detection System Options

Other researchers have demonstrated the high performance of convolutional

neural networks (CNNs) for fruit detection (see Section 2.1). In particular,

Faster R-CNN, YOLO and SSD have all been applied to fruit detection tasks

with impressive results [22,35,39,67,68,74].

Faster R-CNN is a bounding box object detection system developed by

Facebook AI Research (Menlo Park, California, USA) [85]. It is a two stage

system. The first stage is a region proposal network that generates candi-

date object bounding boxes. The second stage extracts features and performs

classification and bounding box regression.

Mask R-CNN is an extension of Faster R-CNN that produces segmentation

masks for each object instance in addition to bounding boxes [111]. Segmen-

tation masks are predicted by a branch section of the neural network) that is

added in parallel to the bounding box recognition branch. The extra compu-

tation adds only a small speed penalty.

You Only Look Once (YOLO) is a real time bounding box object detection

87

system [83]. A single convolutional network predicts bounding boxes and class

probabilities from one evaluation of an input image. The latest iteration,

YOLOv3, improves on the accuracy of the previous versions [112]. The single

stage approach makes YOLO much faster than the two stage systems such as

Faster R-CNN, however accuracy is generally lower.

Single Shot Detector (SSD) is a single stage bounding box object detection

system [84]. It is similar to YOLO in design but has many more bounding

box locations and uses a multi scale approach. The authors claim it is more

accurate than Faster R-CNN while being faster than YOLO.

RetinaNet is a bounding box object detection system developed by Face-

book AI Research (Menlo Park, California, USA) [113]. RetinaNet is a single

stage system (like YOLO and SSD) but is trained using a modified loss func-

tion called focal loss. Focal loss is designed to emphasise examples that are

most difficult for the network to classify, and de-emphasise easy example. This

modification can improve the accuracy of the trained network, with the authors

claiming accuracy on par with two stage detections such as Faster R-CNN.

Mask R-CNN is selected for the kiwifruit detection system. The superior

accuracy of Faster R-CNN over single stage detection systems like YOLO and

SSD is deemed to be more important than the higher speed these alternative

systems offer. Mask R-CNN is chosen over Faster R-CNN as the addition of

masks could be beneficial for size estimation of fruit (size estimation is not

implemented in this work). Requiring semantic labelling of fruit masks is a

severe drawback to Mask R-CNN as producing semantic labels can take more

than 10 times as long as simple bounding boxes [39].

6.1.1 Mask R-CNN Configuration

The Matterport (Sunnyvale, California, USA) developed version of Mask R-

CNN for Tensorflow is used [114, 115]. Resnet101 is used as the backbone of

the detector. Images are resized from 1920× 1200 pixels to 1024× 1024 with

the original aspect ratio preserved using black bars on the top and bottom of

88

Figure 6.1: Images are resized from a resolution of 1920× 1200 to 1024× 1024

with black bars top and bottom.

Backbone Resnet101

Backbone strides [4, 8, 16, 32, 64]

Region proposal network ratios [0.5, 1, 2]

Region proposal network scales (12, 20, 34, 54, 80)

Region proposal network stride 1

Detection minimum confidence 0.9

Detection maximum instances 250

Use mini mask True

Table 6.1: Mask R-CNN configuration parameters.

the resized image (Figure 6.1). Anchor sizes are adjusted from the defaults to

better suit the size of kiwifruit in the images. The important Mask R-CNN

configuration parameters are shown in Table 6.1.

6.2 Image Labelling

To train the kiwifruit detection CNN, labelled data is required. The Labelbox

image labelling tool1 is used to label 109 randomly selected images from the

fruit training dataset. More images would be labeled if time allowed. Each

1https://www.labelbox.com

89

Figure 6.2: Example of a labelled image. Individual masks are used to label

each fruit (pink). Bounding boxes are used to label calyxes (white).

Images labelled 109 (69 training, 20 validation, 20 testing)

Kiwifruit labels 4715

Calyx labels 4065

Mean calyxes per image 37.3

Mean time per image 22.2 minutes

Total labelling time 40.3 hours

Table 6.2: Statistics on labelled data.

kiwifruit is labelled with a mask and each kiwifruit calyx is annotated with a

bounding box as shown in Figures 6.2 and 6.3. Fruit that are intersected by a

wire, branch, leaf or other object are labelled as one fruit, with the mask split

into sections (examples are shown in Figure 6.3). Labelling is a time consuming

process with each image taking an average of over 22 minutes (Table 6.2). The

labelled images are randomly split into a training set (69 images), a validation

set (20 images) and a testing set (20 images).

90

Figure 6.3: A second example of a labelled image. Two instances of fruit being

split by a branch can be seen near the centre of the image, and another two

near the top right.

6.3 Training

Training is run on a Titan Xp GPU (Nvidia, Santa Clara, California, USA)

and takes approximately three days. The 69 images in the training set are

used for training. The network is trained on both the kiwifruit and calyx

classes simultaneously. The training parameters used are shown in Table 6.3.

Pre-trained weights for the Common Objects in Context (COCO) dataset are

used for the network [116].

6.4 Inference

Inference is run on a PC with four GPUs (Table 6.4). To maximise perfor-

mance and GPU utilisation, the inference pipeline is split into multiple threads

(Figure 6.4). One thread is dedicated to loading images from the rosbags they

are stored in, uncompressing and undistorting them and adding them to the

inference queue. Sixteen inference threads (four per GPU) take images from

the queue, run inference and place the results in an output queue. The final

91

Learning rate 0.001

Learning rate decay 0.0001

Learning momentum 0.9

Steps per epoch 200

Batch size 1

Number of epochs 2000

Table 6.3: Mask R-CNN training parameters.

CPU AMD Threadripper 1950x (3.4 GHz, 16 cores)

Memory 64 GB DDR4

GPU1 Nvidia Quadro P6000 (24 GB)

GPU2 Nvidia Quadro P6000 (24 GB)

GPU3 Nvidia Titan Xp (12 GB)

GPU4 Nvidia GTX 1080 Ti (11 GB)

Table 6.4: Inference PC specifications.

thread takes the data from the output queue, trims the unneeded data and

write the output to a file. Using this pipeline, inference runs at 22 fps, which

is slightly lower then real-time (28 fps).

6.5 Evaluation

Evaluation is performed using the tools built into the Matterport version of

Mask R-CNN. The 20 images of the testing set are run through the detection

system and the results compared to the ground truth labels. Using a bounding

box intersection over union (IoU) of 0.5, the mean average precision (mAP,

area under the precision-recall curve, averaged over both classes and all 20

images) is 0.90.

In most cases, the detection system performs very well. A typical example

is shown in Figure 6.5. In some images, the sun is directly overhead and

92

Figure 6.4: The inference pipeline. Images are loaded from rosbags, uncom-

pressed and undistored by the image preparation thread. Each of the GPUs

runs four instances of Tensforflow, performing inference. One thread is dedi-

cated to taking the inference output, and writing it to a file.

there are gaps in the canopy, causing the image to be very bright. In these

challenging conditions, the detection system still detects fruit as seen in Figure

6.6. The detection system is capable of producing a single mask that is split

into two segments where a fruit is intersected by a wire or branch (Figure 6.7).

6.5.1 Failure Cases

There are cases where the detection system produces incorrect results. The

most common error is false positive calyx detections, which are often caused

by small dark spots in the images. Holes in leaves and the ends of the clips

used to train the canes are often incorrectly classified as calyxes (Figure 6.8).

Less common is leaves being misclassified as kiwifruit as seen in Figure 6.9.

93

Figure 6.5: An example of fruit and calyx masks produced by Mask R-CNN.

The colours represent different instances of an object (each fruit is a separate

instance). The calyx masks are very rectangular as bounding boxes are used

for training as opposed to the masks used for fruit.

Figure 6.6: An example of direct sun light on the camera. The detection

system is still able to detect the fruit.

94

Figure 6.7: An example of split masks caused by a wire intersecting the fruit.

The two sections of the mask having the same outline colour shows that they

are counted as the same fruit.

Figure 6.8: An example of an image with multiple false positive calyx detec-

tions, circled in red.

95

Figure 6.9: An example of an image with multiple leaves mistaken for kiwifruit,

circled in red.

Chapter 7

Kiwifruit Localisation

Before detected kiwifruit are localised using stereo triangulation, the stereo

correspondence problem must be solved. The stereo correspondence problem

is determining which objects in one image of a stereo pair correspond to which

objects in the other image of the stereo pair. There are two approaches to

solving this problem, dense stereo and sparse stereo. A dense stereo system

finds correspondence on a pixel level, whereas a sparse stereo system finds

correspondence on an object level. Sparse stereo systems are typically less

computationally intensive as they are only finding correspondence for a low

number of objects. Anecdotal evidence shows that dense stereo methods are

neither accurate or fast enough in kiwifruit applications. Therefore, a sparse

stereo approach is pursued [117].

The objects to be localised by the sparse stereo matching system are ki-

wifruit calyxes as detected by the detection system. The calyxes are used for

triangulation as they are smaller in area than the entire fruit and therefore,

their position in the image is less effected by partial occlusion. The centre of the

calyx bounding box is used as the keypoint for triangulation. A reduced search

space, sparse stereo matching algorithm is developed to effectively match fruit.

97

7.1 Stereo Matching Algorithm

The stereo matching algorithm requires pre-existing knowledge of both the

camera geometry (Section 3.3) and the expected scene geometry. This knowl-

edge is used to construct a search window for each of the detected kiwifruit

calyxes (referred to as ‘keypoints’ henceforth). These search windows rep-

resent the area in the other image where the matching keypoint should be

found, given the camera and scene geometry. The geometry of the search

window is shown in Figure 7.1. For each keypoint in one image of a pair,

the epipolar line for the other image is calculated using OpenCV (using the

computeCorrespondEpilines function). The epipolar line represents where

the matching keypoint should be found in the other image based on epipolar

geometry. The search window are centered on these epipolar lines. The width

(w) and position of the search window along the epipolar line (o) is defined

by the camera geometry and the expected object distance from the cameras

(mean stereo disparity d). Ideally, the search window would have a height

(h) of one pixel as the matching keypoint should lie exactly on the epipolar

line. However, detection systems are not perfect, especially when an object is

partially occluded in one or both images. There can also be inaccuracies in

the camera calibration. Therefore, the height of the search window is large

enough that small errors in the location of keypoints do not prevent matches.

Both the width and height of the search window can be increased to account

for these inaccuracies, but the larger the search window the higher the chances

of an incorrect match and the more computationally intensive the algorithm

becomes.

The algorithm will only match two keypoints if both the keypoints are

contained by the other’s search window and hence, meet the set geometry

constraints. The algorithm consists of two stages. Stage one identifies un-

ambiguous matches, while stage two evaluates and selects the best matching

combination when there is ambiguity.

The following notation is used to describe the keypoints and search win-

98

h
o

o+d

w

Figure 7.1: The geometry of a keypoint and search window. The two black

rectangles represent the left and right images. The red line is an epipolar

line running through the rectified and undistorted images. The blue dot is a

keypoint in the left image. The green box is the search window in the right

image where a keypoint matching the blue dot should be found.

dows; Keypoint x in the left image is denoted KLx, while keypoint y in the

right image is KRy. The search window in the right image where a match to

keypoint x (KLx) should be found is denoted WKLx. Note, the numbering of

keypoints in the left and right images are independent, hence, keypoint KRx

is not necessarily a match to KLx.

Stage two of the algorithm judges matches based on their conformance to

the mean fruit height based on all previously seen fruit (both in the current

image pair, and in past image pairs). To do this, the mean of the position of

each keypoint within its matching search window is logged (Figure 7.2). Two

separate logs are maintained, one for all previously seen left images, and the

other for all previously seen right images. These means are referred to as the

‘mean position in window’ henceforth.

7.1.1 Stage One

The first stage of the algorithm identifies all matches where a pair of keypoints

from the left and right image are exclusively contained in the other’s search

window. For example, in Figure 7.3c-d, KL3 is the only keypoint contained in

WKR2 and KR2 is the only keypoint contained in WKL3. These matches are

unambiguous as there is only one possible matching combination that meets

99

a

Figure 7.2: A keypoint (blue) in its matching search window (green). The

distance, a, from the left edge of the search window to the keypoint is logged

for both the right image and left image. The mean of all previously matched

keypoints is calculated and is called the ‘mean position in window’.

the geometry constraints. For each match found, the distance between the

left edge of the search window and the keypoint contained within it is logged

as part of the ‘mean position in window’. Any search windows that contain

no keypoints are discarded as there is no match that meets the geometry

constraints. Search windows containing more than one keypoint are passed to

stage two of the algorithm. The decision tree of stage one is outlined in Figure

7.4.

7.1.2 Stage Two

Stage two of the algorithm attempts to find matches for the keypoints remain-

ing after stage one has been applied. Firstly, each keypoint is assigned to a

group henceforth referred to as a ‘group of ambiguity’ (Figure 7.5). There can

be any number of groups of ambiguity for an image pair. If a search window

contains multiple keypoints, those keypoints and the keypoint corresponding

to the search window are added to one group of ambiguity. This process is

100

Figure 7.3: The steps of the matching algorithm. Panels A and B show a

section of images from the left and right cameras. Panels C and D show

the same images with the keypoints (calyxes) marked as red circles, and the

corresponding search windows marked as blue rectangles. Notice the number

on the calyx labels correspond to the numbers on the search windows in the

opposite image. Panels E and F show the result after stage one has been

applied, two of the fruit have been correctly matched (each colour represents

a match). The remaining four keypoints (two in each image) form a group

of ambiguity because their search windows contain multiple keypoints. Each

potential matching combination is evaluated and the combination that most

closely conforms to the mean height of all fruit previously matched is chosen.

Panels G and H show the final result with the correct matches being found for

all four fruit.

101

For each seach window in left image (WKRx):

How many keypoints are contained in search window WKRx?

>1

No match found.
- Delete keypoint (KRx)
- Delete search window (WKRx)

Keypoint contained in WKRx is KLy.
Is KRx exclusivly contained in WKLy?

Yes No

Ambiguity found.
- Leave for stage 2

Match found.
- KLy is a match for KRx.
- Log mean position in window

0 1

Figure 7.4: A decision tree describing stage one of the matching algorithm.

continued recursively until all remaining keypoints are assigned to a group of

ambiguity. For example, in Figure 7.3e-f, keypoints KL1, KL2, KR3 and KR4

would form the only group of ambiguity.

For each group of ambiguity, the number of keypoints from each image

is counted. If there is an imbalance of keypoints between images, ‘dummy’

keypoints are added to correct the mismatch. A ‘dummy’ keypoint can be

matched with any keypoint from the other image, which represents no match

being found for the keypoint.

Every possible matching combination of the keypoints is listed. A possible

match is when two keypoints are contained in the other’s search window. For

example, the two possible matching combinations in Figure 7.3e-f are;

1. KL1 matched to KR3 and KL2 matched to KR4

2. KL1 matched to KR4 and KL2 matched to KR3

For each match in a potential matching combination, the distance between

the keypoint and the left edge of the search window that the keypoint is being

102

Figure 7.5: Two groups of ambiguity. The blue dots are keypoints in an image.

The green rectangles are search windows. The red rectangles show how stage

two would group the keypoints. Within each group, there is ambiguity as to

which search window should be matched with each keypoint.

matched with is calculated and subtracted from the ‘mean position in window’.

The absolute value of each of these differences is summed for all of the matches

in a potential matching combination to give a cost. For the example above

(Figure 7.3e-f) the two costs equations are;

cost1 = |ML − a(KL1,WKR3)|+ |MR − a(KR3,WKL1)|

+|ML − a(KL2,WKR4)|+ |MR − a(KR4,WKL2)|
(7.1)

cost2 = |ML − a(KL1,WKR4)|+ |MR − a(KR4,WKL1)|

+|ML − a(KL2,WKR3)|+ |MR − a(KR3,WKL2)|
(7.2)

where ML is the left image ‘mean position in window’, and a(KL1,WKR3)

denotes the distance between KL1 and the left edge of WKR3. The potential

matching combination with the lowest cost is selected as the winner. For each

match found, the distance between the left edge of the search window and

the keypoint contained within it (a) is logged as part of the ‘mean position

103

in window’. In the case of the example (Figure 7.3), combination 2 has the

lowest cost and is selected.

After all matches have been selected, each fruit is triangulated using the

OpenCV triangulatePoints function. Coordinates are then converted from

homogeneous to Cartesian using the OpenCV convertPointsFromHomogeneous

function. The result is an estimate of the location of each fruit relative to the

camera pair. Using a transform and the trajectory output from the SLAM

system, the estimated position of each matched fruit relative to the orchard

block is calculated.

7.2 Setting Parameters

The valid range of fruit distances from the camera plane is set to 900–1700 mm

based on the orchard dimensions and accounting for lower hanging fruit (Figure

3.3. OpenCV is used to calculate the mean disparity and search window width

given the camera geometry. The mean disparity is 207 pixels and the search

window width is 128 pixels (d and w in Figure 7.1 respectively). Search window

height (h in Figure 7.1) is set by investigation to 20 pixels as this is large enough

to account for most of the location inaccuracy observed.

7.3 Evaluation

The algorithm is run on 121 randomly selected image pairs from the fruit

training dataset and the results manually evaluated. Matches are classified

as ‘correct’ if a fruit in the left image is matched to the same fruit in the

right image. Matches are classified as ‘incorrect’ if a fruit in the left image is

matched to a different fruit in the right image. Matches are classified as ‘false

positive’ if two false positive detections are matched to each other.

To measure computation time, the matching algorithm is run over 5000

random image pairs and the execution of the matching algorithm is timed.

Tests are conducted on a Xeon E5-1650 V3 CPU (Intel, Santa Clara, USA)

104

Occurrences % of total matches

Image pairs 121 -

Total matches 3768 100 %

Correct matches 3739 99.23 %

Incorrect matches 6 0.16 %

False positive matches 23 0.61 %

Table 7.1: The results of the matching system evaluation. Over 99% of matches

are correct.

Figure 7.6: Example of a false positive match. The match marked in green is

not a fruit, but a dead leaf. The detection system has misclassified the leaf as

a calyx in both images and the matching algorithm has matched it.

with 16 GB of memory.

7.4 Results

A total of 3768 matches are found (31.1 matches per image pair on average)

across the 121 image pairs evaluated (Table 7.1). The correct match is found

in 99.23% of cases and incorrect matches in 0.16%. False positive detections

account for the other 0.61% of cases and are due to the detection system

misclassifying areas of the image (Figure 7.6).

In five of the six cases of incorrect matches, a cluster of fruit are all detected

in one image, but one fruit is missed in the other image (Figure 7.7). When

fruit in a cluster that is at a height significantly different from the mean fruit

height are missed, an incorrect matching combination can be selected.

105

Figure 7.7: Example of an incorrectly matched fruit. The match marked in

grey is not the same fruit in both images. There are three fruit in a cluster

with the middle fruit being partially occluded by the other two. All three of

the fruit are detected in the right image, but the middle fruit is not detected

in the left image. The missed fruit resulted in an incorrect match being found.

Figure 7.8: Example of fruit not being matched because they are too close

to the camera plane. The keypoints fall outside the search window that they

would be in if they are within the valid height range. Detected objects that

lie outside the distance bounds will either not be matched or will be matched

incorrectly.

Fruit that are outside of the set geometric bounds will not be matched.

This is shown in Figure 7.8 where most of the fruit in a very low hanging

cluster are not matched.

Williams et al. used a Hungarian method approach to match kiwifruit in

stereo images for the purposes of harvesting [15]. Their imaging configuration

is very similar to that used for this work. Identical cameras are used, with

a similar baseline and camera to fruit distance. The authors report a 99.7%

successful matching rate which is very similar to the 99.8% achieved by the

system described above (ignoring false positive matches).

Computation time is 1.97 ms per image pair. This time could be im-

106

proved by evaluating matches in parallel, taking advantage of modern multi-

core CPUs.

The algorithm described is best suited to quickly localising objects in en-

vironments that are largely structured but contain variation. Horticultural

applications such as harvesting, spraying, weeding, counting and monitoring

are a good fit. Other applications such as aerial surveying, certain manufac-

turing tasks and automated sports analysis could also be suitable.

Chapter 8

Multi-Frame Fruit Tracking

There is significant overlap between images (Figure 3.3). There is overlap

between consecutive images (images are taken at approximately 200 mm in-

crements), overlap between the two camera pairs and overlap between passes.

Because of this overlap, each unoccluded fruit is seen in 3–10 image pairs.

Therefore, if each individual detection is counted, many more fruit will be

counted than are present in the orchard. There are two options to solve this

double counting issue. The first is to account for double counting statistically,

the second is a multi-frame fruit tracking system that can identify the same

fruit across multiple image pairs.

Accounting for double counting statistically would require the overlap be-

tween images to be consistent. Both canopy height and row width vary between

orchards, and between rows in some cases (Table 8.1). The variation results in

the overlap between images being inconsistent, and hence, the rate of double

counting will be inconsistent. Therefore, a multi-frame fruit tracking system is

required. Herein tracking is identifying the same fruit across multiple images,

each taken from a different viewing angle. This tracking prevents counting any

given fruit more than once.

As the tracking system is required to be run over millions of images in

a reasonable time frame (<2 days), processing time is of high importance.

Therefore, methods that are highly computationally intensive are disregarded.

108

Block Row Width (min-max) Mean Fruit Height

S 01 4.4 - 4.6 m 1.66 m

S 03 3.0 - 5.0 m 1.71 m

M 01 3.2 - 4.7 m 1.77 m

K D1 4.3 - 6.0 m 1.72 m

N 01 2.9 - 3.1 m 1.73 m

Table 8.1: Differences between orchard blocks. The row widths and fruit height

vary both between blocks as well as within blocks. This means overlap between

images is inconsistent.

Using the stereo localisation and the SLAM systems (Chapters 4 and 7),

an estimate of the position of each detected fruit within the orchard block is

known. However there is error in each step of the fruit localisation process

that needs to be corrected.

8.1 Fruit Localisation Error

There are three main sources of error in the fruit position estimates; stereo

triangulation error, intra-pass SLAM error and inter-pass SLAM error. A

demonstration of each type of error is shown in Figure 8.1. An effective multi-

frame fruit tracking system is capable of tracking fruit despite these errors.

Stereo triangulation error is the smallest of the three errors (Figure 8.1A).

It is in the order of 0–50 mm in scale. The causes of stereo triangulation

error are; camera calibration error, detection location inaccuracies and partial

occlusion of fruit. The error is independent for each detected fruit, that is the

error is not consistent across an image pair.

Intra-pass SLAM error is positioning error from the SLAM system between

camera frames (Figure 8.1B). It is larger than stereo triangulation error, in the

order of 0–100 mm in scale. The main cause of intra-pass SLAM error is the

pitch and roll of the ATV as this is not taken into account by the 2D SLAM

system. Translational and yaw errors also contribute due to the SLAM system

109

Stereo Intra-pass SLAM Inter-pass SLAM

Figure 8.1: A demonstration of the three sources of fruit localisation error,

simplified to 2D. In each of the three panels, the red and blue circles represent

the same cluster of fruit, but seen in different image pairs.

being imperfect. The intra-pass SLAM error is consistent for all fruit in an

image pair but varies between image pairs.

Inter-pass SLAM error is the largest of the three error sources (Figure

8.1C). It has been measured at up to 700 mm in scale (Figure 8.2). The cause

is a build up or errors in the trajectory estimated by the SLAM system. The

SLAM system does have a loop closure feature to reduce this type of error,

but because of the challenging nature of lidar based SLAM in an orchard

environment, it does not always totally negate it. The inter-pass SLAM error

is consistent for all fruit in an image pair but varies between image pairs.

8.2 Closest Point

The simplest approach to a multi-frame fruit tracking system is a closest point

algorithm. A closest point algorithm uses the fruit position estimate and

assumes that any two fruit within a certain distance of each other and seen in

different image pairs are the same fruit. This is the approach used by Wang et

al. and Gongal et al., both of whom faced issues with accuracy due to errors in

position estimates [19, 20, 28]. For this method to be effective, the positional

errors must be less than the distances between the fruit. The distances between

110

Initial

Manually Corrected

Figure 8.2: A real example of very large inter-pass SLAM error, viewed from

above. Green fruit are from one pass down a row, red are from an adjacent

pass. In the top panel, fruit are placed by the fruit localisation system (SLAM

and stereo). The arrows show the correspondence of a subset of the fruit.

Reference grid spacing is 100 mm. The lower panel shows the same view

but with the red fruit transformed manually to correct for the SLAM error.

The correspondence between the fruit is clear. The inter-pass SLAM error is

approximately 655 mm in this case.

111

Initial Actual SolutionClostest Point

Figure 8.3: A demonstration of why the simplest approach (closest point) does

not work with large errors. The red and blue circles represent the same cluster

of fruit, but seen in different images pairs. The matches chosen by the closest

point algorithm are incorrect. Because the main source of error is SLAM error,

which is equal for all fruit in an image pair, all of the match vectors should

point in approximately the same direction.

kiwifruit calyxes in a cluster is 50–80 mm, which is smaller than the intra-pass

SLAM error in many cases, and significantly smaller than the inter-pass SLAM

error. There are numerous examples in the data where a closest point aproach

produces correct results. However for the vast majority of examples, the errors

are simply too large for such a simplistic approach. Figure 8.3 demonstrates

how the closest point approach fails when the positional errors are too large.

The stereo triangulation errors are smaller than the distances between fruit.

Hence, the closest point algorithm is suitable for matching fruit if the stereo

triangulation error is the only error source. As the SLAM errors are consis-

tent across all fruit in an image, they can be corrected for using point cloud

registration algorithms (Section 8.4). Once a transform correcting the SLAM

error is calculated for each image pair, the closest point algorithm can match

each fruit, completing the fruit tracking system.

112

8.3 Iterative Closest Point

The iterative closest point (ICP) algorithm is a point cloud registration tech-

nique [99]. A floating point cloud is moved using a 6-axis, rigid transform, to

register it to a fixed point cloud. The transform is optimised by minimising a

cost function, usually the sum of squared distances between each point in the

floating cloud and the nearest neighbour in the fixed cloud.

The ICP algorithm is implemented and applied to fruit registration. The

fruit in a new image pair form the floating point cloud to be transformed.

All the previously seen fruit within a 3 m radius form the fixed point cloud.

The minimize function of SciPy, with the Nelder-Mead solver is used to opti-

mize the transform [118]. A KDTree is formed using the neighbors.KDTree

class of scikit-learn to efficiently calculate the distance from each point to its

nearest neighbour [119]. The cost function is a sum of squared distances with

additional terms to penalise large transforms (Equation 8.1).

cost = a(x2 + y2 + z2) + b(φ2 + θ2 + ψ2) + c
n∑

i=0

Dnn(pi)
2 (8.1)

where a, b and c are constants, x, y and z are the translational components

of the transform, φ, θ and ψ are the rotational components of the transform

and Dnn(pi) is the distance from point pi to its nearest neighbour in the fixed

cloud. Once the optimiser has sufficiently optimised the transform, the closest

point algorithm is used to form the final matches.

The ICP algorithm performs well in some cases. However, when the SLAM

errors are larger than approximately 50 mm and/or there are new fruit seen or

fruit missed in an existing cluster, errors are frequently made. One image pair

that is incorrectly optimised, often leads to a series of images being incorrectly

optimised as the errors compound.

The errors are caused by the optimiser becoming stuck in a local minima

and/or the global minimum not being at the correct location. Figure 8.4 shows

an example of a situation where the ICP system could make an error. Both of

113

Solution 2Initial Solution 1
Figure 8.4: A demonstration of why the ICP algorithm fails in some cases.

The initial locations of the fruit are shown with the closest point indicated by

the arrows. There are two potential solutions the ICP algorithm could find,

that both have a similar cost associated with them. It is ambiguous which is

the correct solution, without more information.

the two potential transform and matching solutions have similar costs. Ideally,

the cost function would have a clear global minima at the correct transform

location, however in situations as illustrated, this is not the case. The cost

function is often not a fair representation of the problem.

A thorough evaluation of the performance of the ICP algorithm is not

conducted as the performance is clearly not adequate to be useful for the given

data. Efforts are instead directed towards forming a more robust solution.

8.4 Kernel Correlation

The kernel correlation (KC) approach is similar to ICP. However, instead of

only the closest fixed point to each floating point being used in the cost func-

tion, every fixed point is used (Figure 8.5) [120]. This change makes KC more

robust to noisy data than ICP.

The KC algorithm is implemented with a Gaussian kernel (Figure 8.6).

Using all of the points proved to be too computationally intensive, so only

114

ICP KC
Figure 8.5: The difference between the ICP algorithm and the KC algorithm.

The KC algorithm uses all fruit within a set radius rather than just the closest

fruit. Note that the correlations for one fruit are highlighted for clarity in the

KC diagram.

points within a radius of 200 mm are used. Otherwise, the implementation is

identical to the ICP implementation.

The KC algorithm performs better than the ICP algorithm. In particular

it is more robust in situations where there are missing fruit in either of the two

point clouds. However, the performance is not high enough to provide reliable

fruit tracking.

A thorough evaluation of the performance of the KC algorithm is not con-

ducted as the performance is clearly not adequate to be useful for the given

data.

Both the ICP and KC algorithms operate on only the point clouds. How-

ever, more information is available in the images. The KC algorithm could be

augmented with information taken from the images to improve its reliability

and performance.

115

Distance

C
o
st

Figure 8.6: The negative Gaussian function used as the cost for each pair of

points in the KC algorithm.

8.5 Calyx Comparison

Comparing the visual similarity of kiwifruit in different images can provide a

score with which to weight the KC costs. Scarfe claims that kiwifruit blossom

(calyx) ends ‘appear to be as unique as a finger print’ [13]. If that claim is true,

accurately differentiating kiwifruit from each other based on their appearance

should be possible.

The kernel correlation algorithm requires a mean of 12.0 comparisons be-

tween calyxes per detected fruit. The mean number of localised fruit per image

is 30.9. So for every image, an average of 370.8 calyx comparisons will be made.

As the algorithm is required to be run on millions of images in a reasonable

time frame (<2 days), computation time for the calyx comparisons should be

less than 100 ms per image.

A dataset of different views of the same calyxes is formed by manually

identifying the same fruit in different image pairs (Figure 8.7). A total of 262

fruit are included, with a mean of 11.0 images per fruit. For each image pair

that a fruit is identified in, two calyx images are obtained, one from the left

image and one from the right. Each calyx image is 40× 40 pixels, centred on

the centre of the calyx bounding box.

116

Figure 8.7: A subset of the calyx dataset. Each row is a different fruit. The

images have been rotated to correct for the rotation of the ATV at the time

of imaging.

The rotation of the ATV is not necessarily the same for each pass down a

row, particularly at the start and end of rows. Therefore, a rotation is applied

to each calyx image to correct for the rotation of the ATV at the time of

imaging, as estimated by the SLAM system. Applying this rotation means the

calyx comparison system is not required to be robust to varying rotation and

should thus be quicker and more accurate.

8.5.1 Facial Recognition for Kiwifruit

Modern facial recognition algorithms, such as FaceNet, can be trained/tuned to

discriminate between human faces with up to 99.6% accuracy [121]. They can

achieve this high performance despite the images being taken from a variety of

viewpoints. FaceNet encodes each face it’s shown as a 128-dimensional vector.

Each of the 128 dimensions describes a different property of the face. These

properties are learned via the training process. To train, the network is fed

triplets of images (images A, B and C). Image A and B are different images

of the same person, while image C is of a different person. The three images

are passed through the network to generate a 128-dimension vector describing

each. The network will then be adjusted to make the vectors from images

A and B closer to each other (measured as the Euclidean distance between

the two vectors) and those from images A and C further apart. In this way,

117

Embedding size 128

Weight decay 0.0001

Learning rate decay epochs 100

Learning rate 0.01

Fruit per batch 33

Epoch size 1000

Optimiser RMSPROP

Batch size 90

Random flip False

Random crop False

Number of epochs 500

Table 8.2: Training parameters used for FaceNet.

once training is complete, FaceNet is able to distinguish between two faces

that it has never before seen. If an algorithm can be tuned to encode the

subtle differences between human faces, it can also be tuned to do the same

for kiwifruit calyxes.

8.5.1.1 Training

The 262 fruit calyx dataset is split randomly into a training set of 220 fruit

and a validation set of 42 fruit. The training set contains a total of 2470

individual fruit images, of 220 distinct fruit, as there are multiple images of

each fruit (from different viewpoints). An open-source, TensorFlow based

implementation of FaceNet is trained1. Images are scaled up from 40×40 pixels

to 160×160 to suit the architecture of the network. The model is trained from

random initial values. The parameters used for training are shown in Table

8.2.

The authors of FaceNet observed significant improvements in performance

when increasing from 2.6 million training images to 26 million (76.3% to 85.1%

1https://github.com/davidsandberg/facenet

118

accuracy) [121]. Further improvements are seen when using up to 260 million

images (86.2% accuracy), although with diminishing returns. Because of the

time consuming nature of creating the calyx dataset, only 2470 images are

included in the training set. Therefore, high accuracy is not expected.

8.5.1.2 Evaluation

The real world use case for comparing calyx images is to compare a fruit seen in

a new image pair, to a fruit that has been seen in a random number of previous

image pairs, and may or may not be the same fruit. To mimic this use case,

the following procedure (outlined in Figure 8.8) is used to select images to

compare from the validation dataset of 42 fruit (420 total calyx images).

From the validation dataset two fruit are selected at random. From the first

fruit, one calyx image pair is selected at random. This pair of calyx images is

referred to as the ‘fixed set’. From the remaining calyx image pairs of the first

fruit, a random number of calyx image pairs are selected. This set of calyx

image pairs are referred to as the ‘same set’. From the second fruit, a random

number of calyx image pairs are selected. This third set of calyx image pairs

is referred to as the ‘different set’. To summarise; there are three sets of calyx

image pairs. The ‘fixed set’ contains a single pair of calyx images. The ‘same

set’ contains a random number of calyx image pairs, of the same fruit as in the

fixed set. The ‘different set’ also contains a random number of calyx image

pairs, but of a different fruit.

Each image in the three sets (fixed, same and different sets) is run through

the trained FaceNet model to obtain the vector describing each image. The

Euclidean distance between each vector from the ‘fixed set’ and each vector

from the ‘same set’ is calculated (Figure 8.9). The minimum of these distances

is taken as the ‘same score’. The Euclidean distance between each vector

from the ‘fixed set’ and each vector from the ‘different set’ is calculated. The

minimum of these distances is taken as ‘different score’. The two scores are

both logged and the full procedure (selecting new images and running them

119

Fixed
Set

Same
Set

Different
Set

IP0 IP1 IP2 IP3 IP4 IP0 IP1 IP2 IP3 IP4 IP5

Calyx Dataset

F0 F2 F3 F4 F5 FnF1

Figure 8.8: The evaluation image selection process. From the calyx dataset,

two fruit are selected at random (red arrows). From the image pairs of the

first fruit, one pair of images is randomly selected, forming the ‘fixed set’

(green arrow). From the remaining images pairs, a random selection is taken,

forming the ‘same set’ (blue arrows). From the image pairs of the second fruit,

a random selection is taken, forming the ‘different set’ (purple arrows).

120

Same
Set

Different
Set

Fixed
Set

Figure 8.9: Each image in the ‘fixed set’ is compared to each in the ‘same

set’ (green) by measuring the Euclidean distance between the generated vec-

tors. The minimum distance is logged as the ‘same score’. Each image in the

‘fixed set’ is compared to the each in the ‘different set’ (red) by measuring the

Euclidean distance between the generated vectors. The minimum distance is

logged as the ‘different score’.

through FaceNet) is repeated 50,000 times.

8.5.1.3 Results

The distribution of scores is shown in Figure 8.10. If a threshold is placed

such that an equal number of false positives and false negatives are produced,

the error rate is 8.74%. This is very high performance given the low number

of images in the training set. The distribution of scores for ‘different fruit’ is

approximately normal, however the distribution of scores for ‘same fruit’ has

many spikes. These spikes are due to the low number of fruit in the validation

set (42), which causes scores to cluster.

The FaceNet system takes an average of 2.8 ms to encode a pair of calyx

images as vectors when using the computer outlined in Table 6.4. The encod-

121

0.0 0.1 0.2 0.3 0.4 0.5
Score

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

De
ns

ity

FaceNet Calyx Comparison Evaluation
Different fruit
Same fruit

Figure 8.10: The performance of the FaceNet based calyx comparison system

on the validation calyx dataset. The scores for the ‘same fruit’ comparisons

are lower, on average, than those for the ‘different fruit’. This suggests that

the system is able to identify the same calyxes in different images.

ing is only performed once for each calyx image pair. For a full image pair

containing the mean number of fruit (30.9), 86.5 ms are required to calculate

all vectors. The timing is conducted in a single threaded test using only one of

the GPUs available in the system. Comparison of two image pairs (calculating

distance between each pair of vectors) takes 33 µs, using the same computer.

Comparison timing is also conducted in a single threaded configuration, using

only one of the CPU cores available.

Investigation into the cause of the high scores for ‘same fruit’ (>0.2) shows

the cause to be fruit near the edge of the images. If the 40 × 40 pixel crop

of a calyx extends beyond the edge of the image it is taken from, black pixels

are inserted to ensure the full 40× 40 pixel image size, as seen in Figure 8.11.

The high scores for images near edges suggests FaceNet is evaluating fruit

images based on the distribution of black pixels in the images. Black pixels

are due to both fruit near the edges of images and from the rotation applied

to images to account for ATV rotation. In creating the calyx image dataset,

122

Figure 8.11: An example of images of two fruit in the calyx validation dataset

where the edge of images is seen. The calyx images with red borders have

been taken from the edge of images and hence have a different arrangement of

black pixels to the other images of the same fruit. The difference causes the

FaceNet based calyx comparison system to misidentify these fruit.

fruit are randomly selected from all of the orchard blocks in the fruit training

set. The 40× 40 pixel crop of each calyx is taken and a rotation is applied to

account for the rotation of the ATV at the time of image capture. Therefore,

in the calyx dataset, the rotation (and hence the distribution of black pixels) is

likely to be different between any two randomly selected fruit, but very similar

between images of the same fruit (see Figure 8.7). In a real world situation,

the rotation applied to fruit that are near each other will be very similar as the

ATV is always facing down the direction of the row. The only exceptions are

at the start and end of rows and in rare occurrences of obstacles in orchards.

Therefore, a system evaluating calyx images based solely on the black pixels

would perform well when applied to the calyx dataset but very poorly in a

real world situation. It appears that the FaceNet based system is using the

black pixels as its method for differentiation. This is a flaw in the design of

the experimental set-up. Further evaluation of FaceNet with this flaw fixed is

not performed due to time limitations.

123

8.5.2 Direct Calyx Comparison

For stereo matching purposes, Scarfe used a normalised cross-correlation tem-

plate matching system [13]. A 16× 16 pixel, normalised grey-scale image of a

calyx from one image is translated around an area of the other image of the

stereo pair to find the locational of best fit. The fit is evaluated using a sum of

squared differences between each pixel of the two images. Scarfe claims this al-

gorithm performed very well for stereo matching purposes, but it is very slow,

taking 14–26 seconds per image pair. A similar, cross-correlation template

matching approach could be applied to inter-frame calyx comparison.

Four versions of a direct calyx comparison system are developed and eval-

uated. The first compares the raw calyx images, pixel for pixel. The second

compares a grey-scale, normalised version of the calyx images. The third com-

pares a grey-scale mean compensated version of the calyx images. The fourth

version uses a binary representation of the calyx images for comparison.

8.5.2.1 Raw Image Comparison

A pixel-wise, sum of squared differences system is implemented to compare

two calyx images. Comparison is conducted on each of the red, green and blue

channels of each pixel. To prevent the black pixels, caused by the image rota-

tions, from biasing results, black pixels are disregarded. The sum of squared

differences, divided by the number of non black pixels, is used as the final

difference score. A high difference score suggests the images are from different

fruit. The process is shown in Figure 8.12.

Evaluation of the raw colour image comparison algorithm is conducted

using the same method as for the FaceNet system (Section 8.5.1.2), but with

the full calyx dataset used rather than just the validation dataset. Generation

of each calyx image, which in this case is simply applying a rotation, takes

34.6 µs, with the comparison step taking 179 µs (Table 8.3). The error rate is

24.7%.

A second version of the raw image calyx comparison system using grey-

124

962

3663

Same

Different

Figure 8.12: Two examples of the 40 pixel colour calyx comparison process.

The top row shows two images of the same fruit being compared. The two

calyx images to be compared are on the left, followed by the differences in the

two images in the red, green and blue colour channels. The brightness of each

pixel in the difference images represents the difference in the two calyx images

with bright being a large difference. The final difference score is also shown.

The bottom row shows the same process for two images of different fruit.

Method Generate Compare Error Rate

40px, colour 34.6 µs 179 µs 24.7%

40px, grey-scale 37.9 µs 131 µs 30.3%

Table 8.3: The performance of the two variants of the raw image calyx com-

parison system.

scale images as opposed to colour images is also implemented. The process is

outlined in Figure 8.13. The generation step is slightly slower at 37.9 µs due

to the need for a colour conversion as well as a rotation, but the comparison

step is faster, at 131 µs. The error rate is higher than the colour system at

30.3%.

Analysis of the errors from both the colour and grey-scale version of the

raw image comparison system show the main source of error is different overall

brightness levels between images of the same calyx. An example of brightness

difference can be seen in Figure 8.14.

125

251

463

Same

Different

Figure 8.13: Two examples of the 40 pixel grey-scale raw calyx comparison

process. The top row shows two calyx images of the same fruit being compared,

followed by the differences in the two images. White pixels represent large

differences and black pixels, small differences. Note the differences have been

exaggerated to increase visibility. The final score is also shown. The bottom

row shows the same process for two images of different fruit.

2179

Figure 8.14: An example of two images of the same calyx with different bright-

ness levels. The first two images are the two calyx images, the third image is

the difference image. The brightness difference causes a high difference score.

126

Raw

Grey-scale

Rotated

Normalised

Figure 8.15: The steps used to create the normalised calyx images. The image

is first converted to grey-scale. Then a rotation is applied to correct for the

rotation of the ATV. The image is then normalised, ignoring the already black

pixels.

8.5.2.2 Range Normalisation

To overcome the brightness difference issues of the raw image comparison sys-

tem, a system is implemented using a normalisation step. Grey-scale images

are normalised so the darkest pixel has a value of 0 and the brightest, 255.

The pixels that are already black due to the rotation applied to the image

and fruit near the edges of images are ignored in the normalisation step. An

example of the normalisation is shown in Figure 8.15.

Using normalised grey-scale images, the error rate is 13.1% (Table 8.4).

The generation time is 133 µs while the comparison time is 131 µs.

Analysis of the errors highlights two issues. The first issue is sky being

visible beside the fruit in some images, but not others. The sky is much

brighter than the fruit and causes the rest of the image to be very dark when

normalised. The effect of sky can be seen in Figure 8.16. The second cause of

errors is calyxes not being properly centred in the images. If two images of the

same calyx are misaligned, the difference score will be large, causing errors, as

127

7283

Figure 8.16: An example of sky pixels in a calyx image. The sky pixels are

seen in the top right of the first image, which cause the fruit to be very dark

after normalisation. The large difference in overall brightness of the two calyx

images means there is a high difference score.

1678

Figure 8.17: An example of the calyx not being properly centred in both

images. The first image has the calyx to the right of the centre of the image

whereas the second image has the calyx towards the left. This causes a high

difference score.

seen in Figure 8.17.

To overcome these issues, two modifications are applied to the system. The

first modification is to disregard very bright pixels in the normalisation step in

the same way that black pixels are disregarded. The second modification is to

repeat the comparison multiple times with one of the calyx images translated

to different positions (Figure 8.18). A difference score is calculated at each

position and the lowest of the scores is used as the final difference score. Five

positions are tested for each calyx comparison; one with no translation and

one each with translations of one pixel up, down, left and right. A version

using nine positions is also tested, which adds positions two pixels up, down,

left and right.

Adding white pixel rejection deceases the error rate to 12.7% (Table 8.4).

Both generation and comparison time are unchanged. Using both white pixel

rejection and the five position translation system decreases the error rate to

11.5%. As the translation system is repeating the comparison step multiple

times, with computational overhead in between each comparison, comparison

time increases significantly to 966 µs. The nine position translation system

128

948

1519

671

1168

1082

No change

Left 1px

Right 1px

Up 1px

Down 1px

Figure 8.18: An overview of the translation system. Each row shows one of

the tested configurations, with the two calyx images, followed by the difference

image and the difference score. The first row has both calyx images in their

usual form. The other four rows show the first calyx image translated one

pixel left, right, up and down respectively, which results in a a set of difference

scores. The lowest difference score is taken as the final score, which in this

case is obtained when the first calyx image is translated one pixel to the right.

129

Method Generate Compare Error Rate

40px 133 µs 131 µs 13.1%

40px, no white 133 µs 131 µs 12.7%

40px, no white, 5-position 133 µs 966 µs 12.1%

40px, no white, 9-position 133 µs 1789 µs 11.5%

16px, no white 92 µs 86 µs 6.9%

16px, no white, 5-position 92 µs 640 µs 5.1%

Table 8.4: The performance of the variants of the range normalisation calyx

comparison system.

reduce the error rate to 11.5% and increases comparison time to 1789 µs.

Further, analysis of the errors shows higher pixel differences around the

edges of the images as opposed to in the centres. A version of the range

compensation system is implemented using a crop taken from the centre of

the calyx image. The optimal crop size is found to be 16 × 16 pixels by

investigation. Using 16× 16 pixel images reduces the error rate to 6.9%, while

both generation time and comparison time are also decreased (Table 8.4).

Adding the five position translation system used with the range normalisation

system, further reduces error rate to 5.1%, however comparison time increases

to 640 µs.

8.5.2.3 Mean Compensation

Range normalisation expands the range of pixel brightness in an image to

match the maximum allowable range. This range expansion has more of an

effect on images that have a small dynamic range than those with a large

dynamic range. In contrast, mean compensation does not effect the dynamic

range of images, it adjusts the mean brightness of each image so they are all

the same.

A mean compensation system is implemented. Once an image has been

converted to grey-scale and the ATV rotation applied, the mean pixel value is

130

Method Generate Compare Error Rate

40px, no white 120 µs 93 µs 15.2%

16px, no white 94 µs 88 µs 9.5%

16px, no white, 5-position 94 µs 692 µs 6.7%

Table 8.5: The performance of the variants of the mean compensation calyx

comparison system.

calculated. The mean value calculation ignores pixels that are already black

or white. The mean is then subtracted from each pixel.

Evaluation shows the mean compensation calyx comparison system achieves

a 15.2% error rate when using 40 × 40 pixel images. Generation time is 120

µs, and comparison time is 93 µs (Table 8.5).

A version of the mean compensation system is implemented using a 16×16

crop of the calyx image. Using the cropped calyx images, the error rate is

9.5%, while both generation time and comparison time are decreased (Table

8.5). Adding the five position translation system further reduces error rate to

6.7%, however comparison time increases to 692 µs.

The LED lighting used on the data capture system causes a visible bright

spot on each fruit. The position of the bright spot depends on the orientation

of the fruit and the position of the fruit within the image. The bright spot will

tend to be below the calyx on fruit near the top of the image and vice versa.

Fruit near the centre of the image tend to have the bright spot surrounding the

calyx as can be seen in Figure 8.19. The differences in position of the bright

spot can cause high difference scores when comparing images of the same fruit

as can be seen in Figure 8.20. The bright spot issue effects the raw image

comparison system and both the range normalised and mean compensation

systems.

131

Figure 8.19: A full image showing the how the bright spot on each fruit changes

across the image. The LED lighting on the data capture system causes a bright

spot on each fruit. The position of the bright spot on the fruit depends on

both the orientation of the fruit and its position within the image. Fruit near

the left of the image will have the bright spot on the right of the calyx and

vice versa.

2400

Figure 8.20: An example of bright spot mismatch between two images of the

same calyx. The bright spot is above the calyx in the first image and below

it in the second. The result is a high difference score despite the two images

being of the same calyx.

132

Raw

Grey-scale

Rotated

Thresholded

Cropped

Figure 8.21: The binary calyx image formation process. The raw image is

first converted to grey-scale, before being rotated to correct for ATV rotation.

A threshold is then applied, with the darkest 9% of pixels not already black

identified. The image is then cropped to 16×16 pixels (testing is also conducted

without this cropping step).

8.5.2.4 Binary Image Comparison

To reduce the effect of bright spots on calyx comparisons, a binary image

comparison system is implemented. Rather than comparing the difference in

brightness for each pixel of the image, only the location of the darkest pixels

is compared. To create the binary images, the 40 × 40 pixel calyx images

are converted to grey-scale and rotated to correct for ATV rotation. A binary

threshold is then applied to the image to form the binary image. The threshold

is chosen for each image so that the darkest 9% of pixels (excluding already

black pixels) are below the threshold. The 9% threshold is found to produce

the lowest error rates. The comparison step is then a pixel-wise exclusive or

(XOR) operation followed by a sum to count the number of pixels that are

different between two binary images. The process is outlined in Figure 8.21.

133

Method Generate Compare Error Rate

40px 237 µs 15 µs 10.9%

16px 237 µs 15 µs 8.0%

16px, 5-position 237 µs 122 µs 6.4%

Table 8.6: The performance the variants of the binary image calyx comparison

system.

The error rate of the 40 × 40 pixel binary image system is 10.9% (Table

8.6). Generation time is significantly higher than the other methods at 237 µs

due to the added complexity of the thresholding step. However, comparison

time is very low at 15 µs. Note that the comparison time is the same for

both the 40 × 40 pixel and the 16 × 16 pixel versions. This is because the

XOR operation is fast enough that it makes up a small percentage of the total

comparison time.

A version of the binary image system is tested using a cropped region of

the binary image. It is found that 16×16 pixels provides the highest accuracy

with an error rate of 8.0% (Table 8.6). Increasing the number of positions

tested to five, using the five position translation system described above, fur-

ther decreased the error rate to 6.4%. However, the additional computation

increases comparison time to 122 µs.

Other methods and modifications are tested but not fully evaluated. These

include, centring the binary images at generation time to avoid the need for

the translation system. This centring is achieved by balancing the number of

white pixels in each of the four quadrants of the image. However this centring

approach increases both the error rate and generation time. Also tested is

modifying the binary image approach by applying a blur to the image before

the threshold step, which slightly increases the error rate and generation time.

Weighting the difference in pixels nearer the centre of the images higher than

the outer pixels using a Gaussian weighting function, is also tested. This

weighting increases comparison time and slightly increases the error rate.

134

8.5.3 Summary

The performance of all the variants of the calyx comparison systems is shown

in Table 8.7. When using the kernel correlation system for multi-frame fruit

tracking, the mean number of calyx comparisons executed is 12.0. The mean

number of fruit per image is 30.9. The total time to conduct calyx comparisons

for an average image is calculated using the following equation:

t = 30.9(g + 12c) (8.2)

where t is the total image time, g is the generation time and c is the comparison

time.

As the algorithm is to be applied to millions of images, low processing

time is a priority. Therefore, only systems with a total image processing time

less than 100 ms are considered for use in the final fruit yield estimation

system. Of the algorithms that meet this time requirement, the algorithm

with the lowest error rate is the 16 × 16 pixel binary image, five position

method (henceforth referred to as ‘the calyx comparison system’). Therefore,

this method is selected for use in the final fruit yield estimation system. The

distribution of difference scores produced by the the calyx comparison system

is shown in Figure 8.22.

8.6 Intra-Pass Fruit Tracking System

The intra-pass fruit tracking system consists of three sections:

Kernel correlation with calyx comparison to correct for the intra-pass

SLAM error.

Match selection to identify correspondence between fruit in new images and

previously seen fruit.

Final fruit matching to identify the remaining fruit to be matched.

135

Method Total Image Time Error Rate

Raw

40px, colour 67.4 ms 24.7%

40px, grey-scale 49.7 ms 30.3%

Range Normalisation

40px 52.7 ms 13.1%

40px, no white 52.7 ms 12.7%

40px, no white, 5-position 362.3 ms 12.1%

40px, no white, 9-position 667.5 ms 11.5%

16px, no white 34.7 ms 6.9%

16px, no white, 5-position 240.2 ms 5.1%

Mean Compensation

40px, no white 38.2 ms 15.2%

16px, no white 35.5 ms 9.5%

16px, no white, 5-position 259.5 ms 6.7%

Binary Image

40px 12.9 ms 10.9%

16px 12.9 ms 8.0%

16px, 5-position 52.6 ms 6.4%

Other

FaceNet 98.8 ms 8.7%

Table 8.7: The performance of each of the calyx comparison systems evaluated.

The total image time is the time to perform all the generation and compari-

son steps required to process an average image. All total image times below

100 ms are shown in bold as they meet the computation time requirement.

The FaceNet system is included for reference, however the error rate reported

should not be trusted due to the issues discussed in Section 8.5.1.3.

136

0 25 50 75 100 125 150 175
Raw Score

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

De
ns

ity

Calyx Comparison System Evaluation
Different fruit
Same fruit

Figure 8.22: The distribution of difference scores produced by the calyx com-

parison system.

All three of the sections are implemented using a single threaded architecture.

As the system is applied on a per pass basis, multiple passes can be processed

in parallel on a multi-core CPU to significantly lower overall computation time.

8.6.1 Kernel Correlation with Calyx Comparison

The kernel correlation with calyx comparison system (KC+CC) is a modified

version of the kernel correlation system described in Section 8.4. The cost

function is weighted by the score from the calyx comparison system (Section

8.5) rather than being solely a function of distance between two points. Figure

8.23 demonstrates the differences between the ICP system, the KC system and

the KC+CC systems.

The detected fruit in a new image make up a point cloud referred to hence-

forth as the ‘floating cloud’. All fruit detected in previous images taken within

1.5 m of the new image make up a point cloud referred to henceforth as the

‘fixed cloud’.

Fruit that are detected near the edge of an image are often not accurately

localised by the stereo system as the detected calyx positions are influenced

137

ICP KC KC+CC
Figure 8.23: A comparison of the ICP, KC and KC+CC algorithms. The red

circles represent fruit seen in one image, the blue circles represent fruit seen

in another image. For the KC+CC diagram, the size of the arrow represents

the weight from the calyx comparison system. For both the KC and KC+CC

diagrams, arrows from just one fruit have been highlighted for clarity.

by the image edge (Figure 8.24). Hence, fruit detected within 20 pixels of the

edges of images are disregarded.

For each of the fruit in the floating cloud, fruit in the fixed cloud within

a search radius are identified. This search radius is the greater of either 0.2

m or 1.5 times the last transform distance (the last transform distance is

explained below). For each of the nearby fruit identified in the fixed cloud, a

calyx comparison is conducted (Section 8.5). Each calyx comparison score is

normalised using the hyperbolic tangent function shown in Equation 8.3 and

visualised in Figure 8.25. The threshold (thresh) is set to the calyx comparison

optimal threshold, which is 54.0. The denominator value of 15 is chosen so the

function approximately mimics the probability of two fruit with a particular

score being the same fruit.

weight = 0.5 +
1

2
tanh

(
thresh− score

15

)
(8.3)

A three axis, translational rigid transform is adjusted to minimise a cost

function. A three axis translational transform is used rather than a six axis

138

Figure 8.24: An example of a fruit detected on the edge of an image. The white

circle shows the detected location of the calyx. When fruit are near the image

edge, the centre of the calyx tends to be inaccurately located, which results

in localisation error when stereo triangulated. The localisation error causes

errors in the fruit tracking system leading double counting of fruit. Hence,

fruit detected within 20 pixels of image edges are disregarded.

0 20 40 60 80 100
Calyx Comparison Score

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ise

d
W

ei
gh

t

Calyx Comparison Normalisation Function

Figure 8.25: The calyx comparison score normalisation function from Equation

8.3. The dotted line represents the threshold (thresh), which is 54.0.

139

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Distance Between Points (m)

1.0

0.8

0.6

0.4

0.2

0.0

Co
st

Gaussian Cost Function

Figure 8.26: The Gaussian part of the cost function used for the transform

optimisation, seen in Equation 8.4. Note the Y-axis is negative.

transform to reduce computation time. The cost function consists of two parts,

the first being the magnitude of the transform to penalise large transforms.

The second part is the sum of a cost between each of the points in the floating

and the fixed clouds. The cost between each point is a Gaussian function of

the distance between the points and the calyx comparison score between the

two fruit. The full cost function is shown in Equation 8.4 with the Gaussian

function visualised in Figure 8.26. In practice, the cost function is only eval-

uated for fruit combinations that have a normalised calyx comparison score

above 0.3 to reduce computational intensity.

cost = tfmag +

nfloat∑
i=1

nfix∑
o=1

−ccioe−dio
2/0.01 (8.4)

where tfmag is the magnitude of the total transform, ccio is the normalised

calyx comparison score between fruit i in the floating cloud and fruit o in the

fixed cloud, and dio is the distance between those two fruit. The constant used

in the exponential function of 0.01 is set by investigation.

The minimize function of SciPy is used with the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) solver [118,122]. The BFGS solver is found to produce accu-

rate results while converging quicker than other solvers available for use with

140

SciPys minimize function. The gtol, the gradient normal threshold for optimi-

sation termination, is set to 0.00001, and the maximum number of iterations

is set to 50. The optimisation is initialised with an initial guess of 0, (no

transform).

The resulting transform produced by the optimiser is applied to all fruit

in the floating cloud. The magnitude of the transform is known as the last

transform distance and is used in the next iteration of the process.

8.6.2 Match Selection

Once the intra-pass SLAM error has been corrected by the KC+CC system,

fruit correspondence is calculated using the match selection system. The match

selection system is similar in operation to the stereo matching system (Chapter

7). Two stages are used with the first identifying unambiguous matches and

the second selecting the best matching combinations in cases of ambiguity.

The match selection system evaluates potential matches based on a match

score. The match score is calculated for each pair of points between the fixed

and floating cloud. This match score is the same Gaussian function of distance

weighted by the normalised calyx comparison score as used in the KC+CC

system and shown in Equation 8.5.

matchScore = ccioe
−dio

2/0.01 (8.5)

where ccio is the normalised calyx comparison score between fruit i in the

floating cloud and fruit o in the fixed cloud, and dio is the distance between

those two fruit (after the KC+CC transform has been applied). For any pair

of fruit to be matched, the match score must be greater than a threshold,

which is set at 0.01. Figure 8.27 shows the combinations of distance and calyx

comparison score that meet this threshold.

Stage one of the system identifies unambiguous matches using an iterative

process. The match score for each pair of fruit is checked. If the match score is

above 0.01, all of the other match scores for the two fruit are checked. If each

141

0.00 0.05 0.10 0.15 0.20 0.25
Distance Between Points (m)

0.0

0.2

0.4

0.6

0.8

1.0

Ca
ly

x
Co

m
pa

ris
on

 S
co

re

Match Score Threshold

Figure 8.27: The calyx comparison scores and distance between points that

are eligible for matching. Any potential matching combination in the green

zone will be matched, assuming it meets the other matching requirements.

of those other match scores are less than half of the match score in question, a

match is declared. Both the fruit are removed from the remainder of the match

selection process. Any fruit with no match scores above 0.01 are removed from

the match selection process with no match found. The process is repeated until

no changes are made. The process is outlined in Figure 8.28 and an example

is shown in Table 8.8.

Stage two of the match selection system takes the remaining unmatched

fruit and selects the best matching combinations. Each fruit is assigned to a

group of ambiguity. A group of ambiguity is a set of matching combinations

where the correct set of matching combinations is not clear. Any two fruit that

have a match score >0.01 will be assigned to the same group of ambiguity. If

a group of ambiguity has a different number of fixed fruit than floating fruit,

‘dummy’ fruit are added to correct the imbalance. These ‘dummy’ fruit can be

matched to any fruit in the opposite cloud and represent no match being found

for the matching fruit. The match score from any fruit to a ‘dummy’ fruit is 0,

however, it is always considered a valid match despite the match score being

<0.01. For each group of ambiguity, the total match score is calculated for

142

For each fruit pair

Is match score > 0.01?

Is match score >2x any other match
score for either of the two fruit?

Yes No

No match
- Move on to next fruit pair

It's a match!
- Remove both fruit

Yes No

Remove any fruit with no match scores >0.01

Figure 8.28: A flow diagram for stage one of the match selection process. The

match score for each pair of fruit between the floating and fixed cloud is first

checked. If it is >0.01 and is more than double the match score of either of the

two fruit with any other fruit, it is selected as a match. Once all match scores

have been checked and matches selected, any fruit with no match scores >0.01

are removed. The process is then repeated until an iteration is completed with

no changes being made.

143

1 2 3 4

1 0.04 0 0 0.86

2 0 0 0.20 0

3 0.64 0.04 0 0

4 0.47 0.81 0 0.12

5 0 0 0.73 0.23

→

1 2

2 0 0

3 0.64 0.04

4 0.47 0.81

→

1 2

3 0.64 0.04

4 0.47 0.81

Table 8.8: Three iterations of stage one of the match selection system. Each

row represents a fruit in the floating cloud, and each column a fruit in the fixed

cloud. Each value in the table is the match score for the pair of fruit. The

first iteration identifies the two green highlighted match scores. Each of the

two matches scores are above the threshold of 0.01 and are more than double

any other match scores for those fruit. For example, floating fruit 1 and fixed

fruit 4 have a match score of 0.86. The next highest match score for either

of those fruit is between floating fruit 5 and fixed fruit 4, of 0.23, which is

less than half of 0.86. The two matches are logged and the rows and columns

corresponding to those fruit are removed. The second iteration identifies no

new matches, but finds floating fruit 2 (red), which has no match scores above

the threshold for any of the remaining fixed fruit. Hence floating fruit 2 is

removed. Iteration three identifies no new matches as for each match score

above 0.01 there is another match score that is greater than half as large for

one of the two fruit. The process is terminated as no changes are made during

iteration three.

144

4 5 8

1 0.73 0 0.28

2 0.38 0 0.20

7 0 0.18 0

9 0 0.29 0

Table 8.9: Stage two of the match selection system. Each row represents a

fruit in the floating cloud, and each column a fruit in the fixed could. Each

value in the table is the match score for the pair of fruit. Note that fruit have

already been removed by stage one of the match selection system, hence the

discontinuous numbering. Groups of ambiguity are formed. The fruit marked

in yellow belong to one group of ambiguity, and those marked in blue belong

to another. For each group of ambiguity, the total match score is calculated

for each of the matching combinations. The selected matches are shown in

green.

each of the matching combinations. The total match score is the sum of the

match scores that make up the matching combination. The combination with

the highest total match score is selected. An example is shown in Table 8.9.

For the yellow group of ambiguity shown in Table 8.9, the two matching

combinations are:

1. floating1 matched to fixed4 and floating2 matched to fixed8

2. floating1 matched to fixed8 and floating2 matched to fixed4

The total match scores are 0.73 + 0.20 = 0.93 and 0.38 + 0.28 = 0.66 re-

spectively. Therefore, matching combination one is selected. For the blue

group of ambiguity shown in Table 8.9, there are two floating fruit and only

one fixed fruit. Therefore, a dummy fixed fruit is added. The two matching

combinations are:

1. floating7 matched to fixed5 and floating9 matched to fixeddummy

2. floating7 matched to fixeddummy and floating9 matched to fixed5

145

The total match scores are 0.18 + 0 = 0.18 and 0 + 0.29 = 0.29 respectively.

Therefore, matching combination two is selected.

Once all the matches are selected, the orchard block referenced positions of

the matched fruit are updated. The position of a matched fruit is the average

of the orchard block referenced locations that fruit has been detected in. For

example, if a fruit had been seen in two previous image pairs, and is seen in the

current image pair, it’s new position will be the mean of the three positions.

The location after the KC+CC translation has been applied is used as the

position from the current image. If no match is found for a fruit in the floating

cloud, it is added to the list of previously seen fruit with it’s location being

that after the KC+CC translation has been applied. The KC+CC and match

selection process are then repeated for the next image pair.

8.6.3 Final Fruit Matching

Once all the images in a pass have been processed by the KC+CC and the

match selection systems, all fruit should be matched. However, this is not

always the case. Consider a situation where a fruit is seen in a series of three

image pairs. In the first image pair, the fruit is fully visible, but in the second

and third image pairs, the fruit is partially occluded. This occlusion causes a

low calyx comparison score between the first and second instances of the fruit,

preventing a match. The third instance of the fruit has a match score of 0.3 to

the first instance and 0.4 to the second instance. Therefore, it gets matched to

the second instance. The result will be two fruit counted where there is really

only one fruit. The final fruit matching system is implemented to fix errors

like this one.

All pairs of fruit in a pass that are within 0.08 m of each other and are

detected in different images are identified. A calyx comparison is conducted

between each of these pairs of neighbouring fruit. A final match score is

calculated for each neighbouring pair of fruit using Equation 8.6

finalMatchScore =
cc

d
(8.6)

146

0.00 0.02 0.04 0.06 0.08 0.10
Distance Between Points (m)

0.0

0.2

0.4

0.6

0.8

1.0

Ca
ly

x
Co

m
pa

ris
on

 S
co

re

Final Match Score Threshold

Figure 8.29: The calyx comparison scores and distance between points that

are eligible for matching with the final fruit matching system. Any potential

matching combinations in the green zone will be matched, assuming they meet

the other matching requirements.

where cc is the normalised calyx comparison score between the two fruit and

d is the distance between the two fruit. If the final match score is greater

than a threshold, set at 7, and is the highest final match score for either of

the two fruit, it is declared a match. The combination of distances and calyx

comparison scores that can be matched are shown in Figure 8.29.

The matched fruit have their positions averaged as in the match selection

system. The final matching process is repeated until no further matches are

found.

8.6.4 Evaluation

To evaluate the performance of the intra-pass fruit tracking system, a fruit is

chosen at random from an orchard block. This chosen fruit is a ‘test’ fruit.

The closest five fruit, or all fruit within a 0.2 m radius of the first test fruit,

whichever is fewer, are also selected as test fruit. All images taken within a

1.0 m radius of the chosen fruit are identified (measured in only the horizontal

plane). In each of the image pairs, the test fruit are marked with a coloured

circle. The colour of the circle denotes which of the test fruit it is. The images

are viewed and each fruit is tracked through the series of images. If the fruit is

147

Metric Fruit Percentage of Total

Total Fruit 792 100%

Correctly Tracked 738 93.2%

Double Counted 42 5.3%

Mixed up 12 1.5%

Table 8.10: The intra-pass fruit tracking system evaluation results.

correctly identified in each image it is detected in, it is recorded as ‘correctly

tracked’. If a fruit is identified as two different fruit, it is recorded as ‘double

counted’. If two fruit are both identified as the same fruit in different image,

it is recorded as ‘mixed up’. An example of correctly tracked fruit is shown

in Figure 8.30. The process is repeated six times for each of the 25 orchard

blocks in the fruit training data set.

Computation time is measured for a single pass. The time for each iteration

of the final fruit matching process is also measured along with the number of

fruit matched in each iteration. Computation is carried out on the PC listed

in Table 6.4. All algorithms are single threaded, so the high core count on the

CPU used does not effect results.

8.6.5 Results

The results of the intra-pass fruit tracking system evaluation are shown in

Table 8.10. Of the 792 fruit observed, 93.2% are correctly tracked through all

images they are detected in. Partial occlusion is the largest single cause of

errors, causing 31.5% of all errors. An example of partial occlusion causing

matching errors is shown in Figure 8.31. An example of the system correctly

matching fruit in challenging imaging conditions is shown in Figure 8.32.

Processing time for a pass consisting of 1539 image pairs is 144.5 s. Of

that time, 15 s is spent loading data from disk. The final fruit matching

system took 48.5 s of the total time to run (Table 8.11). Before the final fruit

matching system is run, there are 24943 fruit. Afterwards there are 11772, a

148

Figure 8.30: An example of the intra-pass fruit tracking system evaluation

method. The seven images shown are a sequence of images taken near the

location of the test fruit. Note, only one image of each stereo pair is shown,

but for evaluation purposes, both the images of each stereo pair are used. All

six of the highlighted test fruit are correctly identified in all images they are

visible in.

149

Figure 8.31: An example of the intra-pass fruit tracking system failing due to

occlusion. The fruit marked with yellow in image 2 is visible in both the other

images. The partial occlusion in images 1 and 2 cause a low calyx comparison

score, preventing the correct matches from being made. Note, only the left

image of each camera pair is shown for simplicity.

150

Figure 8.32: An example of the intra-pass fruit tracking performing well despite

severe glare in the images. The two images shown are from different camera

pairs. Note, only the left image of each camera pair is shown for simplicity.

151

Iteration Fruit Matched Time Taken

1 7353 29.8 s

2 3205 10.8 s

3 951 3.8 s

4 208 1.5 s

5 48 1.0 s

6 7 0.8 s

7 0 0.8 s

Total 11772 48.5 s

Table 8.11: The number of fruit and time taken for each iteration of the final

fruit matching system.

52.8% decrease. This shows that the final fruit matching system is contributing

significantly to the overall accuracy of the fruit tracking system.

8.7 Inter-Pass Fruit Rejection

Due to the large SLAM errors encountered, achieving inter-pass multi-frame

fruit tracking is left as future work. However, for this yield estimation system,

a method of preventing double counting due to inter-pass image overlap is

required. Therefore, a simple fruit rejection system is implemented.

For each fruit in a row, the closest image capture location is identified

(measured only in the horizontal plane). If that image is part of the same pass

as the fruit, it is kept, otherwise, it is discarded. Figure 8.33 illustrates the

process.

The inter-pass fruit rejection system removes the overlap between passes

and hence the over-counting bias that overlap would introduce. The system

does not take into account the SLAM error, so it cannot be expected to perform

well on a per fruit basis. However, on an orchard block scale, it should perform

adequately. An example of performance on real data is shown in Figure 8.34.

152

Figure 8.33: An example of the inter-pass fruit rejection system, viewed from

above. The three colours represent the three passes down a row. Circles

represent fruit, crosses represent the location of the cameras at the time of

imaging. Any fruit that is closer to an image location of a different pass is

rejected (represented by the greyed out circles). The closest image location for

a selection of the fruit is indicated by the arrows.

8.8 Fruit Visualisations

With all fruit matching and fruit rejection finished, the fruit in an orchard

can be visualised. Figure 8.35 shows a section of an orchard block from above

with the rows highlighted. A section of an orchard block with fruit coloured

by height is shown in Figure 8.36. A fruit density map overlaid on an aerial

photograph of the orchard is shown in Figure 8.37. These visualisations can be

used to quickly and easily identify which areas of the orchard require attention

from the grower.

153

Figure 8.34: An example of the inter-pass fruit rejection system with real data,

viewed from above. The three colours represent different passes down the same

row. The squares are the camera locations when images are taken. Note there

are two rows of each colour square as there are two stereo camera pairs on the

data capture system. The circles represent fruit with the greyed out fruit being

those that are rejected by the system. Correspondence can be seen between

the kept and rejected fruit.

154

Figure 8.35: The final fruit point cloud viewed from above. The colours denote

the rows of the orchard block. Note, only a section of the orchard block is

shown.

155

Figure 8.36: The final fruit point cloud viewed from above. The fruit are

coloured based on their height. Low fruit are red, average height fruit are

green and high fruit are blue/purple. Rows are oriented across the image,

which can be seen by the bands of higher (blue/purple) fruit. The vertical

bands of blue fruit are where the beams cross over the top of the rows. The

areas of no fruit that can be seen along the edges of some rows are male plants,

which do not produce fruit (they provide pollen to the female plants).

156

0

150

Fr
u
it

 p
e
r

m
2

Figure 8.37: A fruit density map of an orchard block, displayed over an aerial

photograph of the orchard. Some areas of the orchard are more productive

than others. The small evenly spaced areas of no fruit are where the male

plants are. Aerial photograph sourced from the Land Information New Zealand

(LINZ) Data Service and licensed for reuse under the Creative Commons BY

4.0 licence.

Chapter 9

Model Parameters

Forming a model to predict the occlusion rate in an orchard requires param-

eters that correlate with occlusion rate. Figure 1.7 shows how the spatial

distribution of fruit can effect the occlusion rate. The density and uniformity

of the spatial distribution are two factors that can cause varying occlusion

rate. Higher fruit density will result in higher occlusion, as will a highly non

uniform spatial distribution.

Orchard blocks come in a range of shapes, sizes and arrangements. These

differences in the layout of the orchard could also effect the occlusion rate.

Therefore, the properties of the orchard layout are parametrised.

9.1 Fruit Density

The more fruit per area, the more likely any fruit is to be occluded. Fruit

density is calculated as the number of fruit detected divided by the area of the

orchard block. The fruit density across four orchard blocks is shown in Table

9.1. It can be seen that the fruit density varies significantly with the most

dense block having twice the density of the least dense.

158

Orchard Block Average Fruit Density

A 01 61.2 fruit/m2

P C2 29.5 fruit/m2

K A1 51.1 fruit/m2

N 01 41.9 fruit/m2

Table 9.1: The estimated fruit density of four orchard blocks. Fruit density

varies greatly between blocks.

Orchard Block Fruit Height Standard Deviation

P C1 0.123 m

K E1 0.108 m

G 11 0.120 m

S 01 0.136 m

Table 9.2: The standard deviation of fruit heights across four orchard blocks.

9.2 Fruit Height Variation

Fruit that are high in the canopy are more likely to be occluded by leaves,

branches, orchard structure and other fruit. Fruit that are low are likely to

occlude the higher fruit. Those that are very low will not be counted as the

stereo localisation system will not accept fruit below a height of 1.34 m from

the ground. Therefore, it follows that the more fruit in the higher and lower

areas of the canopy, the higher the occlusion rate will be.

Average canopy height varies between orchards. Figure 9.1 shows the dis-

tribution of fruit heights in four orchard blocks. It can be seen that the range

of fruit heights for all four orchard blocks is very similar (as dictated by the

limits of the stereo localisation system). Therefore, the absolute range of fruit

heights is not a useful measure. The distribution of fruit heights is differ-

ent between the four orchard blocks, with S 01 having a lower peak with a

wider distribution when compared to K E1. This difference in distribution is

captured by the standard deviation of the fruit heights as seen in Table 9.2.

159

1.4 1.6 1.8 2.0 2.2
Height (m)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

De
ns

ity

Fruit Height Distribution
P_C1
K_E1
G_11
S_01

Figure 9.1: The fruit height distribution for four orchard blocks. The average

height is different for each of the orchard blocks, as is the standard deviation.

9.3 Fruit Clustering

Kiwifruit tend to grow in clusters, which contributes to a higher occlusion rate.

Larger clusters will likely have a higher occlusion rate than smaller clusters.

For this work, a cluster is defined as a group of fruit where each fruit is less

than 0.1 m from another fruit in the cluster. Put another way, if two fruit

are within 0.1 m (Euclidean distance) of each other, they belong to the same

cluster. The threshold of 0.1 m is found by taking physical measurements of

clusters in orchards.

Figure 9.2 shows a visualisation of part of an orchard block with clusters

indicated. Figure 9.3 shows the distribution of cluster sizes for an orchard

block.

The mean cluster size captures the difference between clustering character-

istics in orchards. Table 9.3 shows the mean fruit count per cluster for four

orchard blocks.

160

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 9.2: Fruit viewed from above. The colour of each fruit indicates the

number of fruit in the cluster the fruit is part of. Note fruit that appear to be

close to each other in the image can be at different heights and hence not as

close to each other as they appear in a 2D image.

0 5 10 15 20
Number Of Fruit (n)

0

5000

10000

15000

20000

25000

30000

35000

N
u

m
b

e
r

o
f

fr
u

it
 o

r
cl

u
st

e
rs

Cluster Size Distribution

Fruit in clusters of size n

Clusters of size n

Figure 9.3: A histogram of the cluster sizes in an orchard block.

Note all clusters larger than 20 fruit are plotted as having 20 fruit for clarity.

161

Orchard Block Mean Fruit Per Cluster

A 02 5.5

P A1 4.7

P C6-8 3.4

K E1 3.8

Table 9.3: The mean number of fruit per cluster across four orchard blocks.

9.4 Fruit Distribution Across Row

Fruit are not distributed evenly across the row. More fruit tend to be in the

centre than along the edges of the row. Hence, the occlusion rate is likely to

be higher in the centre than near the edges.

To quantify the distribution of fruit across the row, the following method

is used, which is shown in Figure 9.4. For the centre pass down each row,

all of the image locations are found (Section 4). The image locations are the

location of the two camera pairs on the data capture system, at the time of

each image capture. As the two camera pairs are triggered simultaneously,

the image locations are arranged in pairs, one from each of the two camera

pairs every time a set of images is captured. The two image locations are

used to define a line. This line is perpendicular to the direction of the row,

assuming the data capture system is being driven in the direction of the row

(which is almost always the case). A zero point is defined on the line at the

point halfway between the two image locations. For each fruit in a row, the

closest line is found. The distance along the line that the fruit is located, is

the position of the fruit across the row.

The position across the row of all fruit in an orchard block is shown in Fig-

ure 9.5. To parametrise the distribution, it is compared to a normal distribu-

tion with the same mean and standard deviation using a Kolmogorov-Smirnov

(KS) test. The KS statistic is used as a measure of the conformance to a

normal distribution. KS statistics for four orchard blocks is shown in Table

162

Close up

d

Figure 9.4: A diagram demonstrating how the position of fruit across the row

is measured. The black arrow shows the direction of travel of the data capture

system. The grey circles represent the posts and trunks that border each row.

The blue circles are the fruit. The green crosses represent the image locations

for the two stereo camera pairs on the data capture system during the centre

pass down a row. A line is drawn that passes through each pair of these image

locations (green dotted lines). The closest line to each fruit is found. The

position of the fruit along the closest line (d) is measured relative to the centre

point of the line (marked by the small green circles).

163

3 2 1 0 1 2 3
Position Within Row (m)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

De
ns

ity

Distribution Of Fruit Across Row
A_01
K_B2
P_A1
S_02

Figure 9.5: The distribution of fruit across the row for four orchard blocks.

S 02 has a much higher concentration of fruit at the centre of the row compared

to P A1 and K B2.

Orchard Block KS Statistic Compared To Normal Distribution

A 01 0.033

K B2 0.045

P A1 0.048

S 02 0.025

Table 9.4: The KS statistic comparing a normal distribution to the actual

distribution of fruit across the row in four orchard blocks.

9.4.

9.5 Orchard Area

The area of the orchard is the most fundamental parameter to describe the

layout. Measurement of the area is not required as most (possibly all) orchards

have accurate canopy area measurements available. Figure 9.6 shows an exam-

ple of an orchard map, which has the area of each of the blocks in the orchard.

Orchard maps are supplied for all of the orchards visited for data capture by

the orchard managers. The area reported on these maps is used for the yield

prediction system.

164

Figure 9.6: An example of an orchard map. The orchard has three blocks

shown in green. The area of each block is reported in red. Similar maps

are made available by the orchard managers for all orchards visited for data

collection. Note, identifying information has been censored for privacy reasons.

165

Figure 9.7: Diagram showing the side row overhang. The vertical lines are

the posts, supporting the canopy. The horizontal line is the canopy, which

hangs down over the edge of the orchard block on the left side. The orchard

continues to the right. The data capture system cannot be driven under the

overhang as it is too low.

9.6 Orchard Block Perimeter

The outer edges of orchard blocks can support fruit that may not be visible

to the data capture system. Therefore, orchard edges require parametrisation

to be accounted for by the yield prediction system. However, the ends of rows

and the outer sides of rows are managed differently by growers and hence are

treated separately.

9.6.1 Side Row Overhang

Most orchards have overhang on the sides of the outer rows, as seen in Figures

9.7 and 9.8. This overhang provides additional fruiting area for the plants.

The overhang is typically too low to drive the data capture system under.

The dimensions of the overhang is inconsistent between orchards. In some

orchards, the overhang is very narrow, extending only a small distance from

the edge of the row (∼0.5 m), while in others it can extend up to a full row

width.

166

Figure 9.8: View from within the first row of an orchard. The side overhang

can be seen in the left side of the image. Fruit can be seen growing on the

overhang. These fruit will not be detected as the data capture system cannot

be driven under the side overhang.

9.6.2 End Row Overhang

In contrast to the overhang on the sides of the outer rows, there is generally

very little overhang on the ends of rows (Figure 9.9). This is because people

and orchard equipment (tractors, sprayers, robotic harvesting machines etc.)

enter and exit the rows from the ends and would likely damage overhanging

fruit.

9.6.3 Measurement

To measure the length of the side row and end row of each orchard block, the

SLAM map is used. The SLAM map is loaded in RViz (data visualisation tool

part of ROS) and the built-in measure tool is used to measure the lengths of

the side row and end row. Some orchard blocks have a section of perimeter

that is not perpendicular to the direction of the rows. In this case the length

is measured and counted as half side row and half end row, as shown in Figure

167

Figure 9.9: Unlike the outer row sides, row ends have little to no overhang.

Although there are still rogue branches. The branch pictured managed to snag

the first aid kit off of the data capture system as it was driving through.

9.10.

The perimeter, side row and end row are quantified not only by the raw

numbers, but also as a ratio to of the orchard area. For example, the ratio

of orchard area to row side length. Expressing them as a ratio of the orchard

area has the effect of normalising the values, which may be more useful for the

yield estimation model.

9.7 Row Width

The average row width is measured using the SLAM map and RViz. A mea-

surement is taken across the width of the block, perpendicular to the direction

of the rows (Figure 9.11). The distance is divided by the number of rows in

the block.

168

Figure 9.10: SLAM produced map of an orchard block showing how the sec-

tions of the perimeter of the block are classified. Red lines are side row, green

is end row and yellow is counted as half side row, half end row.

Figure 9.11: SLAM produced map of an orchard block showing how the average

row width is measured. The measurement is taken across the orchard block,

perpendicular to the direction of the rows, as shown in red. The distance is

then divided by the number of rows, in this case there are eight rows.

169

9.8 Final Parameters

The ground truth data for the yield predictions is supplied on a per maturity

area basis. However, data capture and analysis is conducted on a per orchard

block basis. Each maturity area consists of one or more orchard blocks. There-

fore, to make predictions on a maturity area basis, data from multiple orchard

blocks must be combined.

For parameters that accumulate, such as orchard area or fruit count, the

values are summed for all blocks of a maturity area. For parameters that

are a descriptive statistic, such as average canopy density or height standard

deviation, a weighted mean is used where the weight is the detected fruit count

in that block.

The complete list of parameters used for the occlusion model creation is

shown in Table 9.5. These parameters are henceforth referred to as the ‘pre-

dictor variables’ and are used by the occlusion prediction model to predict the

occlusion rate of the orchards.

170

Parameter Source

Orchard area Orchard maps

Average row width SLAM map

Row end length SLAM map

Row side length SLAM map

Perimeter SLAM map

Area to perimeter ratio Orchard map and SLAM map

Area to row end ratio Orchard map and SLAM map

Area to row side ratio Orchard map and SLAM map

Average canopy density Canopy density estimation system

Height standard deviation Fruit point cloud

Mean number of fruit per cluster Fruit point cloud

Distribution across row Fruit point cloud

Fruit density Fruit point cloud and orchard map

Algorithm fruit count Fruit point cloud

Table 9.5: List of all parameters for the occlusion prediction system and the

source of the data.

Chapter 10

Occlusion Prediction Model

The purpose of the occlusion prediction model is to take the measured orchard

parameters (predictor variables) and accurately predict the correction factor

for each maturity area. The correction factor is the ground truth fruit count

divided by the number of fruit detected in the maturity area (Equation 10.1).

Put another way, it is a representation of the occlusion ratio, or the proportion

of fruit that are present in an orchard but not detected by the imaging system

due to occlusion.

correctionFactor =
groundTruthFruitCount

fruitDetected
(10.1)

If the model can accurately predict the correction factor, the number of fruit

in an orchard can therefore be inferred.

10.1 Ground Truth Fruit Count

The yield estimation system is estimating the number of fruit in a maturity

area. However the ground truth data is not obtained as a raw fruit count.

Instead, the number of class one fruit is given as the number of trays of each

count size. Converting number of trays to number of fruit is trivial as the count

size of the tray is the number of fruit in that tray. For example, 100 trays of

count size 30 fruit contains 100 ∗ 30 = 3000 fruit. However the quantity of

rejected fruit is presented as a mass, eg. 26737.0 kg of reject fruit. To estimate

172

the number of rejected fruit from the weight, the following equation is used:

numRejectFruit = rejectMass
averageFruitSize

3.6
(10.2)

This equation assumes that the rejected fruit are, on average, the same mass

as the class one fruit. This assumption is not strictly true but without more

detailed information, it is the best estimation available. The average fruit size

is measured in count size (the number of fruit per tray), so it is divided by the

mass of a tray of fruit, which is 3.6 kg. The ground truth value for fruit in

a maturity area is the number of class one fruit plus the number of rejected

fruit.

10.2 The Data

Comparing the algorithm fruit counts to ground truth fruit counts over the

training dataset shows a very strong correlation (Figure 10.1). A simple linear

trend line has an R2 value of 0.993. The trend line has the following equation:

totalFruit = 1.069 ∗ algorithmFruitCount + 51803 (10.3)

This equation does not have a zero Y-axis crossing, which suggests that an

orchard in which no fruit are detected would still contain fruit. Clearly an

orchard with no detected fruit isn’t likely to have over 50,000 fruit present.

However the non zero Y-axis crossing could be explained by the area of the

orchard blocks that is not imaged, in particular the side row overhang.

On average the algorithm fruit counts are 11.8% lower than ground truth,

with a standard deviation of 6.9% (Table 10.1). The high standard deviation is

due to one maturity area in particular (discussed in Section 10.2.1). Without

the outlier maturity area, the standard deviation is 2.9%.

Calculating the correlation coefficient (Pearson product-moment coefficient)

for each of the predictor variables against the ground truth data shows which

are correlated (Table 10.2).

173

0 200000 400000 600000 800000 1000000 1200000 1400000
Algorithm Fruit Count

0

200000

400000

600000

800000

1000000

1200000

1400000

Gr
ou

nd
 T

ru
th

 F
ru

it
Co

un
t

Ground Truth Fruit Count vs. Algorithm Fruit Count (training dataset)

Figure 10.1: The ground truth fruit count vs. algorithm fruit count for the

maturity areas in the training dataset. The green line is the ideal line (one to

one mapping between algorithm and ground truth fruit counts). The red line

is a linear trend-line. The R2 value is 0.993.

Maturity Area Fruit Count Error Correction Factor

A A -11.1% 1.12

G B -6.3% 1.06

K A -13.5% 1.15

K B -11.6% 1.13

K D -13.3% 1.15

K E -15.4% 1.18

N A -8.4% 1.09

S A -10.6% 1.11

P A -31.7% 1.46

P C -14.5% 1.16

Mean -11.8% 1.17

Standard Deviation -6.9% 0.10

Table 10.1: The algorithm fruit count error and correction factor for each of

the maturity areas in the training dataset. The maximum and minimum values

are shown in bold for each column.

174

Avg. Size Fruit Count Correction Factor

Area 0.245 0.874 -0.694

Avg. Row Width 0.711 0.190 0.016

Row End Length 0.333 0.747 -0.681

Row Side Length -0.169 0.470 -0.187

Perimeter -0.013 0.615 -0.378

Area : Perimeter 0.270 0.570 -0.749

Area : Row End -0.189 -0.137 0.417

Area : Row Side 0.333 0.455 -0.722

Avg. Canopy Density 0.254 -0.274 0.434

Height Stddev -0.885 -0.422 0.084

Avg. Cluster Size 0.140 -0.015 0.150

Across Row Dist. 0.533 -0.024 0.475

Fruit Density 0.450 0.406 -0.334

Alg. Fruit Count 0.465 0.997 -0.746

Table 10.2: The correlation coefficient (Pearson product-moment coefficient)

for all of the predictor variables against the ground truth data for the fruit

training dataset. All correlation coefficients larger than 0.6 in magnitude have

been highlighted.

175

3.0 3.5 4.0 4.5 5.0
Average Row Width (m)

29

30

31

32

33

Av
er

ag
e

Fr
ui

t S
ize

 (C
ou

nt
 S

ize
)

Average Fruit Size vs. Average Row Width (training dataset)

Figure 10.2: The average fruit size and average row width have a positive

correlation. Modern orchards tend to have wider rows. Other modern orchard

practices may lead to larger fruit, causing a positive correlation between row

width and fruit size.

The average row width has a positive correlation with average fruit size

(correlation coefficient of 0.711). A possible explanation for this correlation is

that newer orchards tend to have wider row as orchard layout practices have

changed over time. Other practices that are common in newer orchards may

encourage larger fruit sizes, causing the correlation between row width and

fruit size (Figure 10.2).

The variation in fruit height is correlated with average fruit size. The

larger the variation in height, the lower the fruit size (Figure 10.3). This may

be explained by better maintained orchards having a flatter canopy (hence

lower variation in fruit height) and also having larger fruit.

The two predictor variables that one may expect to be correlated with

fruit size are the canopy density and the fruit density. Higher canopy density

provides additional leaf area to absorb sunlight and produce larger fruit. A

high fruit density would suggest lower fruit sizes as there are more fruit for

each plant to support. However, neither of these expected correlations are

176

0.105 0.110 0.115 0.120 0.125 0.130 0.135 0.140
Fruit Height Standard Deviation (m)

29

30

31

32

33

Av
er

ag
e

Fr
ui

t S
ize

 (C
ou

nt
 S

ize
)

Average Fruit Size vs. Fruit Height Variation (training dataset)

Figure 10.3: The average fruit size and fruit height variation have a negative

correlation. A possible explanation for this correlation is that well managed

orchards would tend to have both a lower fruit height variation and higher

fruit size than less well managed orchards.

demonstrated by the data.

Orchard area is correlated with ground truth fruit count. The larger the

orchard is the more fruit that it contains. However, the correlation is not

as strong as may be expected, which shows there is significant variation in

the productivity of orchards. Orchard productivity is commonly measured by

the number of trays of class one fruit per hectare of orchard (referred to as

trays per hectare). The trays per hectare measurement is used as it takes into

account both the reject rate and fruit size. Looking at the maturity areas in

the training dataset, a more than doubling of productivity can be seen between

the best and worst producing maturity areas (Table 10.3).

Both row end length and orchard perimeter are correlated with ground

truth fruit count. Larger orchards will generally have a higher row end length,

perimeter and fruit count. It would follow that row side length would have

a similar correlation to fruit count, however, it is a much weaker correlation

(correlation coefficient of 0.470 compared to 0.747 and 0.615 for row end length

and perimeter respectively).

177

Maturity Area Trays per Hectare

A A 20398.1

G B 9446.5

K A 14877.0

K B 14212.7

K D 12767.6

K E 13028.8

N A 13452.9

S A 12182.8

P A 13216.1

P C 12092.3

Mean 13567.5

Standard Deviation 2807.4

Table 10.3: The number of trays of class one fruit produced per hectare of

orchard area for all maturity areas in the fruit training dataset. The produc-

tivity of orchards can vary by more than a factor of two between the best and

worst performers. Note, this is ground truth data as opposed to measurements

from the yield estimation system.

178

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Area (ha)

1.0

1.1

1.2

1.3

1.4
Co

rre
ct

io
n

Fa
ct

or

Correction Factor vs. Area (training dataset)

Figure 10.4: Correction factor vs. area for the maturity areas in the training

dataset. The larger the maturity area the lower the correction factor. The

largest and smallest maturity areas shown may be outliers that are skewing

the results.

Orchard area is negatively correlated with correction factor. Saying that

in larger orchards, a higher proportion of the fruit is seen than in smaller

orchards. Plotting the values shows that this correlation may be significantly

influenced by two outlier data points and may not be true in general (Figure

10.4). The row end length, the area to perimeter ratio and the area to row

side ratio all have a negative correlation with correction factor, similar to that

of the area.

The small sample size of only 10 maturity areas (in the fruit training

dataset) makes definitive conclusions about the relationship between variables

impractical. A single outlier can significantly change the correlations between

variables.

10.2.1 Possible Error In Ground Truth Data

Of the 10 maturity areas in the training dataset, P A has a significantly higher

correction factor than the others (Table 10.1). The correction factor of the

179

Figure 10.5: An aerial shot of P A. It consists of two long narrow blocks, both

160 m long by 12.5 m wide. Orchard blocks tend to have a much squarer

aspect ratio and much larger area. Image sourced from the Land Information

New Zealand (LINZ) Data Service and licensed for reuse under the Creative

Commons BY 4.0 licence.

other 9 maturity areas ranges from 1.06 to 1.18 whereas the correction factor

for P A is 1.46. The fruit detection, fruit localisation, SLAM and fruit tracking

systems appear to be functioning as they do in all the other maturity areas.

This maturity area is the smallest of all those visited for data collection with an

area of 0.41 ha. The next smallest maturity area visited is 2.7 times larger at

1.11 ha. P A also has a very high ratio of side row length to area at 1502 m of

side row per ha of area (Figure 10.5). The next highest is 528 m/ha. However,

it is part of an orchard that contains multiple maturity areas, which gives a

higher likelihood of harvested fruit being attributed to the wrong maturity

area either on the orchard or at the packhouse.

The validity of the fruit count for P A cannot be independently verified.

For the purposes of developing the occlusion prediction model, it is assumed

that this and all other ground truth data is correct. This doubt demonstrates

one of the downsides of not having control of the ground truth data capture

process.

10.3 Models

To find the most suitable type of model for yield estimation, multiple models

are applied and their performance compared.

180

10.3.1 Baseline Static Correction Factor Model

The baseline static correction factor model is the reference with which to com-

pare all other models. Only the algorithm fruit count and a static correction

factor are used to predict the actual number of fruit in an orchard. The hy-

pothesis proposed at the beginning of this work (Section 1.4) is essentially that

a more complicated model using additional predictor variables can out-perform

this baseline model.

The baseline correction factor model has the following equation, which is

found via a line of best fit between the algorithm fruit counts and the ground

truth data, with a forced zero Y-intercept.

estimatedTotalFruitCount = 1.124 ∗ algorithmFruitCount (10.4)

Only the fruit training dataset is used to form the model.

10.3.2 Linear Regression

An ordinary least squares linear regression model is applied using the the

LinearRegression class from the scikit-learn library [118]. The normalisa-

tion feature built into the LinearRegression class is used to normalise the

predictor variables before fitting the model. The model produces an equation

in the following form:

estimatedCorrectionFactor = c0x0 + c1x1 + ...+ c14x14 + c15 (10.5)

where xn is predictor variable n, cn is coefficient n. Each of the coefficients are

calculated via least squares linear regression. All of the predictor variables are

used.

A second version of the linear regression model is implemented using a

reduced set of predictor variables. The predictor variables used are the five

with correlation coefficients greater than 0.6 in magnitude to the correction

factor (the highlighted cells in the correction factor column of Table 10.2).

181

10.3.3 Decision Tree Regression

In a decision tree, a series of decision nodes are connected by branches and

eventually terminate in leaf or prediction nodes. The training data is evaluated

and split to form the branches, with the goal of minimising an error function.

In this case, the error function used is the mean squared error.

The DecisionTreeRegressor class from the scikit-learn library [118] is

used to form a model. The creation of the decision tree relies on randomness

and hence the results are different depending on the random seed used. To find

a suitable seed, decision trees are generated with integer seeds from 1 to 1000.

The validation dataset is used to evaluate the performance of each decision

tree. The model with the lowest mean absolute percentage error (MAPE)

is selected as the winning model. The best performer uses a seed of 48 and

produced a model that achieved a 3.835% MAPE across the three maturity

areas in the validation dataset.

10.3.4 K-Nearest Neighbour

To make a prediction, a K-nearest neighbour (KNN) model finds the examples

from the training data that most closely match the new sample. The prediction

is then a function of the predicted variable of those closest examples.

The KNeighborsRegressor class from the scikit-learn library [118] is used

to from the model. The model consists of all of the predictor variables, after

they have been normalised. The normalisation step scales all values so they

are between 0 and 1. For example, the largest maturity area would have an

area of 1 and the smallest, an area of 0.

The model has two meta parameters that need to be tuned, the number of

neighbours to look at and the function with which to weigh the contribution

from each neighbour. The fruit validation dataset is used for this tuning.

Figure 10.6 shows the mean absolute error rate for each combination of meta

parameters. The combination of meta parameters with the lowest error rate is

10 neighbours with uniform weighting. However, using these meta parameters

182

0 2 4 6 8 10
Number of Neighbours

0

1

2

3

4

5

6

M
ea

n
Ab

so
lu

te
 E

rro
r (

%
)

K-Nearest Neighbour Meta Parameter Optimisation (Validation dataset)
Distance weighted
Uniform weighted

Figure 10.6: The error rate with different combinations of meta parameters

for the correction factor K-nearest neighbour model. Using uniform weighting

with 10 neighbours gives the lowest error rate.

is the same as using a static correction factor found by taking the mean of all

10 correction factors in the training dataset. The fact that this meta parameter

set gives the lowest error rate shows that, at least for the validation dataset,

a KNN model is no better than a static correction factor. As using uniform

weighting with 10 neighbours does not provide any additional information over

using a static correction factor, the meta parameters with the next lowest error

rate are used. Which is a uniform weighting with 4 neighbours.

A second version of the KNN model is also implemented, but using a re-

duced set of predictor variables. The predictor variables used are the five with

correlation coefficients greater than 0.6 in magnitude to the correction factor

(the highlighted cells in the correction factor column of Table 10.2). Figure

10.7 shows the meta parameter combinations and corresponding error rates for

this model. As with the full KNN model, using 10 neighbours with uniform

weighting gives the lowest error rate on the validation dataset. So the next

best combination is used, which is 5 neighbours with uniform weighting.

183

0 2 4 6 8 10
Number of Neighbours

0

1

2

3

4

5

6

M
ea

n
Ab

so
lu

te
 P

er
ce

nt
ag

e
Er

ro
r (

%
)

K-Nearest Neighbour (Reduced Predictor Variable Set)
Meta Parameter Optimisation (Validation dataset)

Distance weighted
Uniform weighted

Figure 10.7: The error rate with difference combinations of meta parameters

for the correction factor K-nearest neighbour model with reduced predictor

variable set. Using uniform weighting with 10 neighbours gives the lowest

error rate.

10.4 Performance

The performance of each of the models is compared on the validation dataset

and the test dataset (Table 10.4). Comparing the performance of the models

on the validation dataset is not a fair comparison as both of the KNN mod-

els and the decision tree regressor are tuned using that dataset. Whereas,

the other models are not as they do not have meta parameters to optimise.

However, due to the low number of samples present in the test dataset (three

maturity areas), the validation dataset performance is included to provide a

better representation of the overall performance of the models.

The baseline (static correction factor) model is the best performing model

on the test dataset with a mean absolute percentage error (MAPE) of 0.63%.

However on the validation dataset, performance is much poorer at 4.72%

MAPE. This large difference in performance on the two datasets shows the

impact of the small sample size. The correction factor decision tree regressor

model shows less of a difference in performance between the test and valida-

184

Model Validation Test Mean

Baseline 4.72% 0.63% 2.67%

Decision Tree Regressor 3.84% 2.39% 3.11%

KNN 2.55% 1.63% 2.09%

KNN Reduced 2.97% 1.48% 2.22%

Linear Regression 1.11% 8.67% 4.89%

Linear Regression Reduced 4.83% 5.57% 5.20%

Table 10.4: The mean average percentage error (MAPE) of each of the models

on the validation dataset, the test dataset and the mean of the two. The lowest

error rate for each dataset is highlighted.

tion dataset but with worse overall accuracy than the baseline model. Both of

the KNN models demonstrate high accuracy on the test dataset with <1.7%

MAPE. Their performance on the validation dataset is significantly better

than the baseline. The two linear regression models performed the worst over-

all with MAPE of 8.67% and 5.57% on the test dataset. However, the full

linear regression model is the best performer on the validation dataset despite

no optimisation based on this dataset.

A significance test is performed to analyse the differences in performance of

the models compared to the baseline. The absolute errors for the test dataset

are compared using a one-tailed, paired t-test with alpha of 0.05. The results

are shown in Table 10.5. The test shows that the differences in performance

are not significant.

Due to the small sample size and high variability between per orchard error

rates, no single model can be identified as superior to the others. Both the

KNN models perform better over the combined validation and test datasets

than the baseline model, but they were both optimised using the validation

dataset. When looking at only the performance on the test dataset, the base-

line model is very impressive. However the error rate is 7.5x higher on the

validation dataset, suggesting that the high performance on the validation

185

Model T-Test P-Value

Decision Tree Regressor 0.196

KNN 0.198

KNN Reduced 0.116

Linear Regression 0.051

Linear Regression Reduced 0.118

Table 10.5: Significance test for the occlusion models compared to the baseline

model.

dataset is not representative of its overall performance. Overall, it cannot be

claimed that either of the KNN models is better than the baseline, or vice

versa.

Chapter 11

Conclusions

The inaccuracies of the current manual yield estimation system causes signif-

icant costs for the New Zealand kiwifruit industry. This is an industry that

contributes a large amount to the New Zealand economy, being the coun-

try’s largest horticultural export. Large growth is projected for the industry

with revenue expected to rise from NZ$2.39 billion in the 2017/2018 season to

NZ$4.5 billion by 2025 [4]. Labour shortages are already causing issues for the

industry, which will only worsen with the projected growth. Increasing yield

estimation accuracy and enabling labour saving solutions are two areas that

must be addressed to allow progression of the industry.

A new system has been developed for orchard scale kiwifruit yield estima-

tion. The system is based on two pairs of stereo cameras, a lidar and an IMU

mounted on an ATV. Data was captured in 16 maturity areas across 34 Ha

of kiwifruit orchard. Ground truth harvest data was obtained for each of the

maturity areas from a commercial kiwifruit packhouse.

A simultaneous localisation and mapping (SLAM) system is used to localise

the data capture system within the context of an orchard block. There are two

issues with the SLAM system. The first is the inability of the lidar unit to see

through shade cloth that is placed between rows in some orchards. The second

is the large magnitude of positional error observed in the system, particularly

between passes. Overall, the SLAM system provides accuracy that is adequate

187

for the rest of the components of the system to identify and track fruit.

Canopy density measurements are taken by detecting the visible sky in

images. The system identifies pixels that are both high in brightness and have

a high blue component (RGB colour space). In an evaluation across 17 images,

the system correctly classified 99.43% of pixels, with a processing time of 5.3

ms per image.

To detect kiwifruit in images, the convolutional neural network Mask R-

CNN is used. Mask R-CNN is capable of not only producing bounding boxes

around instances of a detected object, but providing masks that identify the

pixels that belong to each detected object. Training is conducted using masks

for kiwifruit and bounding boxes for calyxes. Across a 20 image testing dataset,

the mean average precision at intersection over union of 0.5 is 0.90. The most

common cause of errors is false positive calyx detections caused by small holes

in leaves and the black plastic clips used to tie canes to wires. Another cause

of errors is areas of leaf are being detected as fruit.

Before detected fruit can be localised in 3D, the correspondence of detected

fruit in one image of a stereo pair to the other needs to be solved. The

correspondence problem is solved with a two step matching process based

on geometry constrained search windows. The first step matches fruit where

there is no ambiguity in the matching combination. The second step selects

a matching combination when there is ambiguity in the correct combination.

The ambiguity is resolved by selecting the combination that will result in

fruit that most closely conforms to the average fruit height observed in the

orchard. An evaluation of 121 image pairs found the correct matches were

identified in 99.23% of cases. Only 0.16% of matches were incorrect, with

the remaining 0.61% being false positive detections being matched (caused by

errors in the detection system, not the matching system). Matched fruit are

then triangulated to give their position relative to the cameras.

The imaging configuration used gives significant overlap between images.

Therefore, fruit are tracked through multiple images to avoid double counting.

188

The fruit tracking system corrects for error in the SLAM system by comparing

the appearance of fruit in different images. This similarity in appearance is

used to weight a kernel correlation algorithm. The kernel correlation algorithm

optimises a 3-axis translational transform which corrects the SLAM error.

Correspondence of fruit from one image pair to the next is then calculated

to identify repeated fruit in a series of images. An evaluation of 792 fruit

found that 93.2% were correctly identified in all images in which they were

visible within a single pass. The largest cause of errors is partial occlusion

causing a difference in appearance of fruit from image to image. Because of

the magnitude of the errors in the SLAM position estimates, fruit tracking

between adjacent passes was not able to be effectively implemented. Instead,

a simplified system that removes fruit from each pass if they are closer to an

adjacent pass than the pass they were detected in, is used.

To estimated the occlusion rate based on the predictor variables extracted

from the data, a series of occlusion prediction models are created. The baseline

model is a simple static correction factor based on the average correction factor

needed for the orchards in the training set. Two variations of a K nearest

neighbour algorithm, a decision tree regressor and two variations of a linear

regression model are tested. On the test dataset, the best performer was the

baseline with a mean average percentage error (MAPE) of 0.63%. However,

on the validation dataset, performance was much poorer with a MAPE of

4.72%. The KNN models were less accurate on the test dataset, but were

more consistent across the test and validation datasets.

The hypothesis set out at the beginning of this work is the following: ‘An

occlusion prediction model will produce dynamic correction factors calculated

based on measurable characteristics of an orchard. These individualised cor-

rection factors will provide more accurate predictions of yield than a static cor-

rection factor.’ This hypothesis has been neither proven nor disproven during

the course of this work. The small sample size and small differences between

the performance of the baseline model and the models under test prevent

189

definitive conclusions from being made. However, multiple of the measured

characteristics of orchards are correlated with the correction factor (Section

10.2), suggesting that a model that outperforms the baseline could be formed.

Data over multiple seasons and across a diverse set of orchards is required

to know if these correlations are true in general or just for the population

sampled.

11.1 Strengths Of The Work

The scale of the work stands out among previous works. A total of 16 matu-

rity areas consisting of over 15 million fruit in 34 Ha of orchard were covered

(Section 3.5). Most previous work has focused on estimating the number of

fruit on single plants or row of plants. Processing data and collecting ground

truth data for plant scale estimation is far less time consuming than doing

the same at orchard scale. However, to provide maximum value for the ki-

wifruit industry, estimating yield on these large scales is required. Utilising

pre-existing ground truth data from packhouses as opposed to hand measur-

ing harvests allows this increase in scale. This work is a large step towards

achieving highly accurate, automated, orchard scale estimations of yield for

kiwifruit. It is the largest fruit yield estimation project ever undertaken, to

the best of the authors knowledge.

The fruit detection system implemented in this work is highly accurate

(Chapter 6). This is enabled by the very high performance of modern con-

volutional neural networks (CNNs) such as Mask R-CNN (the network used

in this work). The literature already contains many reports of the high per-

formance of CNNs for fruit and other object detection, especially in varying

weather and imaging conditions. The success of the kiwifruit detection system

is yet another conformation of the suitability of CNNs for fruit detection over

conventional image processing techniques used in the past.

The stereo vision system used in this work is able to localise fruit accu-

190

rately (Chapter 7). Compared to the monocular vision approach of many pre-

vious works, the addition of a second camera provides 3D localisation of fruit.

Positioning the fruit in 3D aids the fruit tracking system, increasing overall

accuracy. Full 3D tracking of fruit also allows more granular information to

be provided to the grower, increasing the overall utility of the system.

The calyx comparison system employed in this work is both highly accu-

rate and fast (6.4% error rate, 122 µs per comparison, see Section 8.5). These

qualities make it well suited to aiding a fruit tracking system. Although the

deficiencies of the SLAM system prevented a full fruit tracking system from

being implemented, the calyx comparison system is a highly valuable addition

to fruit tracking. Future improvements to the stereo localisation system (Sec-

tion 12.3.2) will further increase the accuracy of the calyx comparison system

and could allow further optimisations to reduce calyx comparison processing

time.

The accuracy of the yield estimation system presented in this work is very

high with the baseline model achieving 0.63% mean absolute percentage error

on the test dataset (Section 10). Compared to the other fruit yield estimation

systems presented in the literature, this result is very good. The thorough

approach of both localising fruit in 3D and tracking tracking them through

multiple overlapping images to reduce the effect of occlusion is responsible for

this high performance.

11.2 Weaknesses Of The Work

As the yield estimations conducted in this work are orchard scale rather than

plant scale, capturing a large enough dataset to draw strong conclusions is

very resource intensive (Chapter 10). Efforts were made to capture as much

data as possible, but with only 16 maturity areas covered, there is simply not

enough data to conclusively quantify the performance of the system. However,

the system has shown the potential to be of use to the kiwifruit industry. The

191

commercial partners associated with this work intend to continue investment

in the system with the aim to commercialise it in the coming years.

The biggest weakness of the yield estimation system is the performance of

the SLAM system (Chapter 4). The positional errors introduced by the SLAM

system (particularly between passes) are too great for the fruit tracking system

to overcome. Also the lidar units lack of ability to see through shade cloth

placed between orchard rows limits the practical utility of the current system.

The author believes both of these issues can be overcome with relatively small

changes to the hardware used on the data capture system (Section 12.2).

By using ground truth data obtained from packhouses, all control of the

quality of that data is lost (Section 3.6). The loss of control is highlighted

by the potential error in the ground truth data discussed in Section 10.2.1.

However, it is this reliance on outside parties that allows the very large scale of

this work. Perhaps a hybrid approach could allow both the large scale and high

confidence in the quality of the data. The labourers harvesting the fruit could

be supervised by researchers, who verify that the fruit is correctly labelled,

transported and fed into the packhouse system. An alternative approach is to

increase the number of samples (more orchards) so that errors with any one

orchard, do not have a large influence on the overall system.

All of the orchards included in this study are located in a small geographic

region around Tauranga, New Zealand (Section 3.5). The orchards are also all

managed by the same orchard management company (Gro Plus Ltd.). These

orchards were used due to the ease of access and logistical constraints around

capturing data. Finally, all data used is from the same growing season. The

resulting lack of diversity in the dataset may have introduced bias and may

result in the conclusions not being true for the wider kiwifruit industry, or

subsequent growing seasons.

More details on the weaknesses of this work and how they can be fixed/mit-

igated are discussed in Chapter 12.

Chapter 12

Future Work

The following section is intended as a guide for the direction of future research

in this area. It is based on the experience of the author while designing and

developing the yield estimation system. Some of the suggestions apply only

to the yield estimation system presented throughout this work, while others

could be applied to other systems and/or crops.

12.1 Data

The yield estimation system presented requires more data to properly ver-

ify its performance. That data should include as much diversity as possible.

Orchards from different geographical regions, managed by different orchard

managers, over multiple growing seasons, grown with different practices (such

as organic) should all be included. More data should also increase the accu-

racy and generalisability of the yield estimation model as the current model is

based on only 10 maturity areas.

Currently, the system has only been trained and applied to green kiwifruit.

Extending/adapting the system to provide yield estimation for gold fruit would

significantly increase the utility of the system. The New Zealand gold crop is

expected to more than double in volume between 2018 and 2027, while the

green crop is expect to decline by a quarter over the same period [11]. Adding

gold fruit would require either retraining of the detection and yield prediction

193

models, or separate gold kiwifruit specific models to be built and trained.

Data was captured before flower opening as part of this work. However,

the data was not used due to time constraints. Adding the capability to

count buds and/or flowers would increase the utility of the system as it would

provide more information to growers and potentially allow targeted bud/flower

thinning (Section 12.4.4). Both the detection model and the calyx comparison

system would need to be retrained/reworked to enable accurate bud/flower

counting.

Adding more sources of data to the yield estimation model could increase

accuracy. The following is a list of data sources that could be added/tracked

to gain further insight into orchard performance:

• Weather data such as rainfall, wind speed, sunlight, temperature, hu-

midity, carbon dioxide concentration etc.

• Previous seasons yield

• Plant spacial distribution

• Plant male to female ratio

• Pollination method and application rate

• Soil data such as moisture content, nutrient levels, density etc.

• Spray and fertiliser applications

• Plant information such as age, rootstock etc.

• Plant training characteristics such as cane spacing, cane diameter, cane

length etc.

• Fruit information such as dry matter, sugar content etc.

Increasing the number and diversity of data channels tracked is a big step

towards being able to apply machine learning to optimise growing practices.

194

12.2 SLAM

The weakest component of the yield estimation system presented is the SLAM

system. There are several aspects that could be changed to improve the quality

of SLAM maps produced.

The M8-1 (Quanergy, Sunnyvale, California, USA) lidar that is used, has

only 8 layers. Other modern lidar units (such as those from Velodyne and

Ouster) feature 16, 32 or 64 layers. The increased resolution would provide

more data to the SLAM algorithm, which should result in higher quality SLAM

output.

The lidar on the data capture system is mounted such that it has a 212° hor-

izontal field of view. In orchards that have small headlands bordered by shelter

belts, turning at the end of a row can result in the lidar’s field of view con-

taining little more than the shelter belt. The shelter belt looks essentially

like a large vertical plane, which provides no distinguishable features for scan

matching. This has been observed to cause errors in positioning on multiple

occasions. Therefore, the lidar should be mounted such that it has an increased

horizontal field of view. If the lidar cannot be mounted in a position where

it has a larger horizontal field of view, adding a second lidar to the rear of

the vehicle would also solve the problem. This will increase the hardware cost

significantly though.

The lidar used on the data capture system is not suitable for use in orchards

with shade cloth between the rows (Section 4.2.2). Shade cloth is common in

gold orchards more so than green orchards. As discussed in Section 12.1, gold

fruit should be a target for future work in this area, therefore the shade cloth

issue will need to be solved. The preliminary experiment discussed in Section

4.2.2 shows that the VLP16 (Velodyne LiDAR, San Jose, California, USA)

lidar is better suited to seeing through shade cloth than the M8-1. A further

preliminary study (not discussed in this work) showed that an OS-1 (Ouster,

San Francisco, California, USA) lidar may also be suited to seeing through

shade cloth. However, these claims about both the VLP-16 and OS-1 require

195

further verification and testing in a wider variety of orchard configurations.

For commercial deployment of a yield estimation system that utilises lidar

based SLAM, solving the shade cloth issue is of high importance.

The data capture system used provided no odometry feedback for the

SLAM system. Adding some form of odometry could significantly improve

the quality of SLAM output as it would provide an additional data source to

the lidar. The odometry could be added via encoders on the vehicle wheels, vi-

sual odometry using a camera pointed at the ground, or by using the upwards

facing cameras to perform visual odometry on the canopy. Wheel encoders

would be the most reliable form of feedback, but require additional hardware.

The ATV used as the base of the data capture system has a relatively small

footprint. It also has soft suspension with large travel. These characteristics

result in a platform that is susceptible to significant roll and pitch due to

uneven terrain and the rider shifting their bodyweight to avoid low hanging

branches. Using a vehicle with a larger footprint and stiffer suspension would

decrease the magnitude of pitch and roll experienced by the lidar, improving

SLAM performance.

The SLAM system (Cartographer) is configured to run in 2D mode. This

mode assumes that the ground is a flat plane, which is not true in kiwifruit

orchards. Cartographer can also be run in 3D mode. Running in 3D mode

would take into account the rolling and pitching of the vehicle as well as

the contours of the ground through the orchard. This change would incur a

significant computational cost but could improve quality of SLAM output.

Improvements to the accuracy of the SLAM system will have flow on ef-

fects to the other components of the yield estimation system. For example,

the fruit tracking system should be both more accurate and require less com-

putation time if the initial estimates of fruit positions are more accurate. If

large enough improvements are made to the accuracy of the SLAM system, the

fruit tracking system could be extended to operate between passes. Adding

inter-pass fruit tracking would reduce the number of double counted and re-

196

jected fruit, improving the overall accuracy of the system. Visualisations of

the orchards fruit would also benefit from the added accuracy as they would

be more representative of the actual orchards. This would in turn increase the

confidence in the system of growers and managers.

12.3 Incremental Improvements

12.3.1 Vehicle

Ideally, the yield estimation system would not be based on an ATV ridden by

a human. It would be based on an autonomous vehicle such as the modular

autonomous vehicle for kiwifruit orchards presented by Jones et. al [75]. Re-

moving the human would decrease health and safety risks which have become

a growing concern in the industry after the death of an orchard worker in

2016 [123]. Orchard coverage efficiency could also be increased by having one

worker deploy multiple autonomous vehicles.

12.3.2 Stereo Localisation

The accuracy of the stereo localisation system could be improved in multiple

ways. The stereo matching system (Chapter 7) could be modified to use the

calyx comparison technique described in Section 8.5. This addition could

increase the already high correct matching rate of 99.23%.

The stereo triangulation system currently uses the centre of the calyx

bounding box (from the detection system) in each image. Any errors in the

bounding box positions result in errors in the triangulated position. These

errors could be reduced by comparing the calyxes in both images to find a

position of best match, as described by Scarfe [13]. To decrease computational

load, the comparison could be implemented using the binary technique used in

the calyx comparison system (Section 8.5). Improving the stereo localisation

system in this way would likely reduce the magnitude of the stereo localisa-

tion error, which is one of the three sources of error the fruit tracking system

197

is designed to correct. The flow on effect would be fewer errors in the fruit

tracking system, and hence more accurate counts of the fruit seen in images.

The search window method used in the stereo localisation system will fail

to match fruit that are too low or high in the canopy, as seen in Figure 7.8. To

solve this the size of fruit in the images could be used to bias the position of

the search window. For example, fruit that are large in the image (measured

by the size of the fruit mask produced by the detection system) would have

their search windows shifted towards a position representing a lower fruit.

This biasing could both allow fruit outside of the set geometric bounds to be

correctly matched, and reduce ambiguity in some matches. Another variation

of this technique is to bias the positions of search windows if the fruit are out

of focus in the image. Fruit that are very low or high tend to be out of focus

and blurry in the image as they are outside of the depth of field of the camera.

To resolve ambiguity in matching combinations, the stereo localisation sys-

tem uses the mean height of all previously seen fruit in the orchard block. This

leads to errors when fruit are far from the mean height. Figure 8.36 shows that

fruit can vary significantly in height across a block, but fruit that are near

each other tend to be approximately the same height as each other. There-

fore, rather than using a global mean height, a localised mean should be used.

A well tuned localised mean would likely produce fewer erroneous matches

that the global mean. In addition to using a localised mean, the height of

a fruit could be estimated based on the proximity of the fruit to beams and

leaders, by adding beam and leader detection to the detection system. Fruit

near beams and leaders tend to be higher than fruit it the middle of bays, as

shown in Figure 8.36. An estimated fruit height based on proximity to beams

and leaders could be used for both biasing of the search window and resolving

ambiguous matching combinations.

198

12.3.3 Row Detection

The yield estimation system presented uses annotations provided by the op-

erator at the time of data capture to identify rows. These annotations both

inform the system of which row and pass is being conducted, and if the system

is currently within a row or not. Having the operator provide these annota-

tions is not a sustainable practice as it is easy for the operator to make an

error. Operators may also be replaced by autonomous navigation systems in

future implementations of the system (Section 12.3.1). Therefore, automatic

identification of the presence of a row, which row it is and the current pass

is required. This could be done based on the map produced by the SLAM

system. The captured images could also be used to identify the start and end

of each row by detecting the presence of the canopy.

12.3.4 Detection

The detection system demonstrated impressive performance with a mean av-

erage precision of 0.90 (Chapter 6). However, a relatively small number of

images (69) were used for training due to the time consuming nature of pro-

ducing annotations. Using more images for training would likely improve the

accuracy of the detection system.

The only network tested for this work is Mask R-CNN with Resnet101

as the backbone. Other networks, such as YoloV3 or RetinaNet or alterna-

tive backbones for Mask R-CNN may offer higher performance for kiwifruit

detection.

Two of the main causes of false positive detections are the black clips used

to tie canes to wires and small holes in leaves (Figure 6.8). In most of these

cases, there is a calyx detected, but no fruit. Rejecting detected calyxes if

they are not contained within a detected fruit could eliminate many of these

false positive detections. However, it may also reject some true positives, so

accuracy would need to be carefully evaluated.

In the detection system, Mask R-CNN is configured to scale the input

199

images from their original resolution of 1920 × 1200 to 1024 × 1024 (Section

6.1.1). Detection accuracy may be improved by modifying the network to

accept full resolution images. Alternatively, images could be split into parts

and inference performed on each, before recombining the image. However, both

of these adjustments would increase computation time significantly, therefore,

any improvement in accuracy would need to be evaluated against the increase

in computation time.

12.3.5 Calyx Comparison

The calyx comparison system uses a hyperbolic tangent function (Equation

8.3) to normalise the raw differences between binary calyx images (Section

8.6.1). The parameters of this hyperbolic tangent are tuned by hand and are

thus likely not optimal. The use of the hyperbolic tangent is also likely sub-

optimal. Ideally a function that closely mimics the probability that any given

raw calyx comparison score is obtained from two views of the same calyxes or

not should be used.

When comparing two calyxes, the current system will compare every avail-

able combination of calyx images. For example, if a newly seen calyx is being

compared with a calyx that has been seen in 3 previous image pairs, there

will be 12 total comparisons made (2 images of the new calyx, 6 images of

the previously seen calyx). The score used is the lowest of the 12 raw scores,

which will then be normalised using the hyperbolic tangent function. As only

the lowest raw score is used, one low outlier can result in the calyxes falsely

having a much higher similarity score than they should. Therefore, more than

just the lowest score should be taken into account. Either a weighted average

of all of the scores or the mean of the lowest 50% (or another proportion) of

the scores could be a better measure.

FaceNet was tested as a potential method for performing calyx comparisons

(Section 8.5.1). The results were promising, however flaws discovered in the

testing methodology, removed all confidence in those results. FaceNet (or

200

another facial recognition system) could prove to be a high performing option

for identifying different views of the same fruit. However, further evaluation

to quantify performance on kiwifruit as opposed to human faces is required. It

is likely that to achieve high accuracy with FaceNet, a larger training dataset

is needed. The barrier to creating a larger dataset is the time required to

identify the same fruit in multiple images. The fruit tracking system can be

used to identify the same fruit across multiple images, with a human to verify

the results. This approach should significantly reduce the time required to

form a large dataset for training and evaluation.

With the current calyx comparison system, the scale of calyxes is not taken

into account. A calyx that is in the centre of an image, and hence at its closest

point to the camera (assuming flat ground), can be compared to the same

calyx, but in the corner of another image, where it is significantly further from

the camera. This is likely to produce a lower similarity score than if the calyxes

appeared the same size in both images. The calyx images could be scaled to

correct for this mismatch, which could improve the accuracy of the system.

12.3.6 Model Parameters

The fruit height standard deviation is intended to measure the variation in

fruit height (Section 9.2). The theory that high fruit hight variation would

result in higher occlusion rates makes intuitive sense. Very high fruit are

likely to be occluded by leaves, lower fruit or branches, and very low fruit are

likely to not be localised by the stereo localisation system. However, when a

canopy has fruit growing in it, there is significant sag in the centre of bays as

they are the least supported sections of the canopy. Areas near beams and

leaders are well supported and are hence higher. Therefore, the fruit height

standard deviation becomes a measure of canopy sag. To quantify the intended

variable, the height of fruit should be compared to the height of other fruit in

the immediate vicinity, not all fruit.

The measure of fruit distribution across a row does not take into account

201

varying row widths (Section 9.4). It takes the position of each fruit within

its row and compares the resulting distribution to a normal distribution with

the same mean and standard deviation. Instead, this should be calculated on

a per row basis and then the mean of all the rows taken. Alternatively, the

position of each fruit across a row could be divided by the width of the row it

is in to normalise it. That way, the whole orchard block can be calculated as

one. The result of either of these methods would be a better measure of the

distribution of fruit across the row in orchards with varying row width.

12.4 New Features

12.4.1 Fruit Size Estimation

Fruit yield is typically measured in trays of fruit rather than number of fruit.

This is because the trays measurement accounts for the size of fruit. The yield

estimation system presented predicts only the number of fruit, and not the size.

Mask-RCNN is used for the detection system as it provides not only bounding

boxes, but masks for detected objects. The training data consists of masks for

fruit and bounding boxes for calyxes. The intention of using Mark-RCNN with

fruit masks, is to add fruit size measurements to enable prediction of average

fruit size. This fruit size estimate would allow estimation of the number of

trays. Additional insight could also be gained into the variability across an

orchard by producing spacial plots of fruit size along with fruit density.

Addition of fruit size estimation is not a trivial task due to partial occlusion.

Accurate estimation of the size of every fruit is likely not possible. Only

taking size estimates from fruit with no or low levels of occlusion may be a

viable solution. Occlusion could be estimated by the convexity of the fruit

mask outline. For example, a fruit with a fully convex mask outline is likely

unoccluded, whereas a mask outline that has multiple concave segments is

likely partially occluded (Figure 12.1). However, the pose of the fruit relative

to the camera must also be taken into account as kiwifruit are shaped more like

202

1

2

3

4 7

6

8

9

11

10

5

13

12 14

Figure 12.1: Examples of detected fruit masks. Fruit 1 and 2 have a fully

convex mask outline, and are unoccluded. Fruit 3, 4, 7, 9 and 10 have partially

concave mask outlines and are partially occluded. However, fruit 14 has a fully

convex mask outline but is partially occluded. The calyx of fruit 1 is positioned

above the centre of the fruit mask, showing that the fruit is not being viewed

along its major axis. The calyx of fruit 2 is close to the centre of the fruit

mask, showing that it is being view from close to its major axis.

an ellipsoid than a sphere. This results in the fruit appearing to be a different

size depending on its pose relative to the camera. There are multiple methods

that could be used to estimate the pose of the fruit relative to the camera.

The first of which is the position of the fruit within the image. Generally, fruit

are oriented so the major axis of the fruit is vertical, however there are many

exceptions to this, particularly in clusters where fruit are in contact with each

other. Fruit that are in the centre of the image are likely being viewed along

the major axis of the fruit. Whereas fruit near the edges of the image are

likely being viewed from an oblique angle. Another method is to analyse the

position of the calyx within the fruit mask. If the calyx is centred within the

fruit mask, the fruit is likely being viewed along its major axis (Figure 12.1).

To ensure consistency of size estimates the best image of each fruit should

be used. The vast majority of fruit are seen in multiple pairs of images. A

score estimating the proximity of the camera to the major axis of the fruit

could be developed. This score could use factors such as the convexity of the

fruit mask, the position of the calyx within the fruit mask and the position of

the fruit within the image. Then the fruit size could be estimated from the

view with the highest score, and hence the best view of the fruit.

Once the best view of a fruit is selected, a circle or ellipse can be fitted to

203

the fruit mask outline. Alternatively, the area of the mask can be measured,

however this would not account for partial occlusions like a circle/ellipse fit-

ting method would. The distance of the fruit from the camera (obtained from

stereo vision as discussed in Chapter 7) can then be used to convert the cir-

cle/ellipse/mask area from image area to real world area. This will give an

estimate of the actual size of the fruit.

An alternative to hand engineering an algorithm for finding the best view

of a fruit may be to train a neural network. For each detected fruit, a section

of the image around the fruit could be cropped out (maybe 150× 150 pixels).

This could then be fed into a neural network that estimates how occluded the

fruit is. The pose of the fruit relative to the camera could also be estimated

in this way, either with the same network or a second neural network.

There may be also be patterns in fruit size that could be exploited. For

example, it may be true that there is very little variation in size between fruit

in the same cluster. That would mean that only the least occluded fruit in

a cluster would need to be measured, all others could be assumed to be very

similar in size.

12.4.2 Psa Detection

Pseudomonas syringae pv. actinidiae (Psa) is a bacteria that is harmful to

kiwifruit plants. It was found in New Zealand orchards in 2010 and spread

quickly throughout the North Island, causing large amounts of damage to

crops. It is still present in orchards nine years later. The effects of Psa have

largely been mitigated by spraying of bactericides [124] and the introduction

of the Psa resilient Gold3 variety of fruit. The effects of Psa on kiwifruit plants

can be seen as brown spots on the leaves as seen in Figure 12.2. Detecting the

brown spots in the yield estimation images to produce maps highlighting the

most effected areas of orchards may provide additional value to growers. It

could also be used to quantify the levels of Psa in orchards and provide more

granular information on the effect of mitigation techniques.

204

Figure 12.2: An example of the brown spotting on leaves caused by Psa.

205

12.4.3 Fruit to Plant Correlation

The pergola growing system has canes coming from both sides of the row,

usually in an alternating pattern (Figure 1.5). This arrangement means that a

fruit cannot be correlated to a specific plant based solely on its location in the

orchard. The best estimate would be a pair of plants. The addition of cane

detection and tracking in addition to fruit detection and tracking could allow

fruit to be attributed to specific plants. Knowing which fruit belong to which

plant allows quantification of the performance of each plant. This increased

granularity of information could allow for changes in the way the plants are

managed.

12.4.4 Targeted Labour

Thinning of buds, flowers and fruit is often conducted in orchards to reduce

the number of fruit and allow the remaining fruit to grow to full size. Thin-

ning is a labour intensive task accounting for 27% of total on-orchard labour

requirements in the 2017/18 season [11]. Variation within orchards means that

some areas require significant thinning while other may require no thinning.

The current method of thinning is to send orchard workers into an orchard

and instruct them to remove a fixed percentage of the buds/flowers/fruit. A

modified yield estimation system could provide a map of the orchard with each

bay (small area approximately 5 m x 5 m) marked with the number of bud-

s/flowers/fruit to remove. This would avoid excess thinning in areas that do

not require thinning and ensure dense areas are adequately thinned. The re-

sult would be saved labour and an increase in crop uniformity, both decreasing

costs and increasing yield.

If cane detection is added to the system, cane diameter estimates could be

made and used to better inform thinning decisions. Thicker canes can carry

more nutrients and thus support more fruit. Knowing cane diameters could

also inform other orchard management decisions.

206

12.4.5 Fruit Maturity Prediction

Currently, before an orchard can be harvested, a sample of fruit must meet a

set of maturity criteria. The criteria includes the sugar content, dry matter

content, seed colour, flesh colour, firmness and more [125]. Generally, fruit

samples are collected by an orchard worker and the tests are conducted over

night so the results are ready for the next morning. Often orchard managers

are waiting on maturity testing results so that harvesting can be conducted as

soon as possible. Harvesting time is the busiest time of year for the orchard

workers, managers and packhouses. Logistics have to be coordinated between

parties to ensure workers and equipment are in the right place at the right

time. This is further complicated by weather as kiwifruit cannot be picked

when wet.

If fruit maturity data is included in the yield prediction system, predic-

tions of fruit maturity could be produced. Better predictions of fruit maturity

could allow for more efficient planning of logistics, reducing labour demand.

Particularly early in the season when there are monetary incentives to harvest

fruit early.

References

[1] Plant and Food Research New Zealand, “Fresh Facts 2016.”

https://www.freshfacts.co.nz/files/freshfacts-2016.pdf [Online, Accessed

2019-09-24], 2017.

[2] Plant and Food Research New Zealand, “Fresh Facts 2017.”

https://www.freshfacts.co.nz/files/freshfacts-2017.pdf [Online, Accessed

2019-09-24], 2018.

[3] Plant and Food Research New Zealand, “Fresh Facts 2018.”

https://www.freshfacts.co.nz/files/freshfacts-2018.pdf [Online, Accessed

2019-09-24], 2019.

[4] Zespri, “Zespri Annual Report 2017/18.”

https://www.zespri.com/ZespriInvestorPublications/Annual-Report-

2017-18.pdf [Online, Accessed 2019-09-28], 2018.

[5] NZKGI, “2018 Kiwifruit Book.” https://www.nzkgi.org.nz/wp-

content/uploads/2018/12/2018-Kiwifruit-Book.pdf [Online, Accessed

2019-09-23], 2018.

[6] Zespri, “Zespri Annual Report 2016/17.”

https://www.zespri.com/ZespriInvestorPublications/Annual-Report-

2016-17.pdf [Online, Accessed 2019-09-24], 2017.

[7] Trevelyan’s, “Kiwifruit Packing Agreement 2019.”

https://trevelyan.co.nz/wp-content/uploads/2019/06/2019-Packing-

Agreement.pdf [Online, Accessed 2019-09-29], 2019.

[8] G. Hutching, “Zespri minimises fungus threat to other exports.”

https://www.stuff.co.nz/business/farming/83013296/zespri-minimises-

fungus-threat-to-other-exports [Online, Accessed 2019-09-20], aug

2016.

[9] Trevelyan’s, “Kiwifruit News.” https://trevelyan.co.nz/wp-

content/uploads/2018/10/TrevelyanSept2018KiwifruitNews.pdf [On-

line, Accessed 2019-09-26], 2018.

208

[10] D. Picken, Inside the Bay of Plenty’s kiwifruit labour shortage. Tauranga,

New Zealand: Bay of Plenty Times, 2018.

[11] NZKGI, “New Zealand Kiwifruit Labour Shortage.”

https://nzkgi.org.nz/wp-content/uploads/2018/07/NZ-Kiwifruit-

Labour-Shortage-July-2018.pdf [Online, Accessed 2019-09-24], 2018.

[12] A. J. Scarfe, R. C. Flemmer, H. H. Bakker, and C. L. Flemmer, “De-

velopment of an autonomous kiwifruit picking robot,” in ICARA 2009 -

Proceedings of the 4th International Conference on Autonomous Robots

and Agents, (Wellington, New Zealand), pp. 380–384, 2009.

[13] A. J. Scarfe, Development of an Autonomous Kiwifruit Harvester. Doc-

toral thesis, Massey University, 2012.

[14] L. Mu, Y. Liu, Y. Cui, H. Liu, L. Chen, L. Fu, and Y. Gejima, “Design of

End-effector for Kiwifruit Harvesting Robot Experiment,” in Proceedings

of the 2017 ASABE Annual International Meeting, (Spokane, Washing-

ton, USA), pp. 1–8, American Society of Agricultural and Biological

Engineers, 2017.

[15] H. A. Williams, M. H. Jones, M. Nejati, M. J. Seabright, J. Bell, N. D.

Penhall, J. J. Barnett, M. D. Duke, A. J. Scarfe, H. S. Ahn, J. Lim, and

B. A. MacDonald, “Robotic kiwifruit harvesting using machine vision,

convolutional neural networks, and robotic arms,” Biosystems Engineer-

ing, vol. 181, pp. 140–156, may 2019.

[16] H. Williams, C. Ting, M. Nejati, M. H. Jones, N. Penhall, J. Lim,

M. Seabright, J. Bell, H. S. Ahn, A. Scarfe, M. Duke, and B. MacDon-

ald, “Improvements to and largescale evaluation of a robotic kiwifruit

harvester,” Journal of Field Robotics, pp. 1–15, jul 2019.

[17] L. Mu, G. Cui, Y. Liu, Y. Cui, L. Fu, and Y. Gejima, “Design and

simulation of an integrated end-effector for picking kiwifruit by robot,”

Information Processing in Agriculture, may 2019.

[18] A. D. Aggelopoulou, D. Bochtis, S. Fountas, K. C. Swain, T. A. Gemtos,

and G. D. Nanos, “Yield prediction in apple orchards based on image

processing,” Precision Agriculture, vol. 12, no. 3, pp. 448–456, 2011.

[19] Q. Wang, S. Nuske, M. Bergerman, and S. Singh, “Automated Crop

Yield Estimation for Apple Orchards,” in Proceesings of The 13th Inter-

national Symposium on Experimental Robotics, (Québec City, Canada),

pp. 754–758, Springer, 2012.

209

[20] Q. Wang, S. Nuske, M. Bergerman, and S. Singh, “Design of Crop Yield

Estimation System for Apple Orchards Using Computer Vision,” 2012

ASABE Annual International Meeting, vol. 7004, no. 12, 2012.

[21] H. Cheng, L. Damerow, Y. Sun, and M. Blanke, “Early Yield Prediction

Using Image Analysis of Apple Fruit and Tree Canopy Features with

Neural Networks,” Journal of Imaging, vol. 3, no. 1, p. 6, 2017.

[22] S. Bargoti and J. Underwood, “Deep fruit detection in orchards,” in

Proceedings of the 2017 IEEE International Conference on Robotics and

Automation (ICRA), (Singapore), pp. 3626–3633, IEEE, may 2017.

[23] R. Zhou, L. Damerow, and M. M. Blanke, “Recognition Algorithms for

Detection of Apple Fruit in an Orchard for early yield Prediction,” in The

11th International Conference on Precision Agriculture (ISPA), vol. 13,

(Indianapolis, Indiana, USA), pp. 568–580, MDPI, 2012.

[24] S. W. Chen, S. S. Shivakumar, S. Dcunha, J. Das, E. Okon, C. Qu,

C. J. Taylor, and V. Kumar, “Counting Apples and Oranges With Deep

Learning: A Data-Driven Approach,” IEEE Robotics and Automation

Letters, vol. 2, no. 2, pp. 781–788, 2017.

[25] R. Črtomir, C. Urška, T. Stanislav, S. Denis, P. Karmen, M. Pavlovič,

and V. Marjan, “Application of Neural Networks and Image Visual-

ization for Early Forecast of Apple Yield,” Erwerbs-Obstbau, vol. 54,

pp. 69–76, jun 2012.

[26] J. Qian, B. Xing, X. Wu, M. Chen, and Y. Wang, “A smartphone-based

apple yield estimation application using imaging features and the ANN

method in mature period,” Scientia Agricola, vol. 75, pp. 273–280, aug

2018.

[27] D. Stajnko, M. Lakota, and M. Hočevar, “Estimation of number and

diameter of apple fruits in an orchard during the growing season by

thermal imaging,” Computers and Electronics in Agriculture, vol. 42,

no. 1, pp. 31–42, 2004.

[28] A. Gongal, A. Silwal, S. Amatya, M. Karkee, Q. Zhang, and K. Lewis,

“Apple crop-load estimation with over-the-row machine vision system,”

Computers and Electronics in Agriculture, vol. 120, pp. 26–35, 2016.

[29] S. Nuske, S. Achar, T. Bates, S. Narasimhan, and S. Singh, “Yield Es-

timation in Vineyards by Visual Grape Detection,” in Proceedings of

the 2011 IEEE/RSJ International Conference on Intelligent Robots and

Systems, (San Francisco, CA, USA), pp. 2352–2358, IEEE, 2011.

210

[30] M. P. Diago, C. Correa, B. Millán, P. Barreiro, C. Valero, and

J. Tardaguila, “Grapevine yield and leaf area estimation using supervised

classification methodology on RGB images taken under field conditions,”

Sensors (Switzerland), vol. 12, no. 12, pp. 16988–17006, 2012.

[31] B. Millan, S. Velasco-Forero, A. Aquino, and J. Tardaguila, “On-the-Go

Grapevine Yield Estimation Using Image Analysis and Boolean Model,”

Journal of Sensors, vol. 2018, pp. 1–14, dec 2018.

[32] A. B. Payne, K. B. Walsh, P. P. Subedi, and D. Jarvis, “Estimation of

mango crop yield using image analysis - Segmentation method,” Com-

puters and Electronics in Agriculture, vol. 91, pp. 57–64, 2013.

[33] A. Payne, K. Walsh, P. Subedi, and D. Jarvis, “Estimating mango crop

yield using image analysis using fruit at ’stone hardening’ stage and

night time imaging,” Computers and Electronics in Agriculture, vol. 100,

pp. 160–167, 2014.

[34] W. S. Qureshi, A. Payne, K. B. Walsh, R. Linker, O. Cohen, and M. N.

Dailey, “Machine vision for counting fruit on mango tree canopies,” Pre-

cision Agriculture, vol. 18, no. 2, pp. 224–244, 2017.

[35] A. Koirala, K. B. Walsh, Z. Wang, and C. McCarthy, “Deep learning for

real-time fruit detection and orchard fruit load estimation: benchmark-

ing of MangoYOLO’,” Precision Agriculture, vol. February, pp. 1–29, feb

2019.

[36] M. Stein, S. Bargoti, and J. Underwood, “Image Based Mango Fruit

Detection, Localisation and Yield Estimation Using Multiple View Ge-

ometry,” Sensors, vol. 16, no. 11, p. 1915, 2016.

[37] Z. Wang, K. Walsh, and B. Verma, “On-Tree Mango Fruit Size Estima-

tion Using RGB-D Images,” Sensors, vol. 17, no. 12, p. 2738, 2017.

[38] P. Wijethunga, S. Samarasinghe, D. Kulasiri, and I. Woodhead, “Dig-

ital image analysis based automated kiwifruit counting technique,” in

2008 23rd International Conference Image and Vision Computing New

Zealand, (Christchurch, New Zealand), pp. 1–6, IEEE, nov 2008.

[39] I. Sa, Z. Ge, F. Dayoub, B. Upcroft, T. Perez, and C. McCool, “Deep-

Fruits: A Fruit Detection System Using Deep Neural Networks,” Sen-

sors, vol. 16, no. 8, p. 1222, 2016.

[40] C. McCool, I. Sa, F. Dayoub, C. Lehnert, T. Perez, and B. Upcroft,

“Visual detection of occluded crop: For automated harvesting,” in 2016

211

IEEE International Conference on Robotics and Automation (ICRA),

no. May, (Stockholm, Sweden), pp. 2506–2512, IEEE, may 2016.

[41] J. P. Underwood, C. Hung, B. Whelan, and S. Sukkarieh, “Mapping al-

mond orchard canopy volume, flowers, fruit and yield using lidar and vi-

sion sensors,” Computers and Electronics in Agriculture, vol. 130, pp. 83–

96, 2016.

[42] C. C. Tran, D. T. Nguyen, H. D. Le, Q. B. Truong, and Q. D. Truong,

“Automatic dragon fruit counting using adaptive thresholds for im-

age segmentation and shape analysis,” in Proceedings of the 2017 4th

NAFOSTED Conference on Information and Computer Science, NICS

2017, (Hanoi, Vietnam), pp. 132–137, 2017.

[43] P. Wijethunga, S. Samarasinghe, D. Kulasiri, and I. Woodhead, “To-

wards a generalized colour image segmentation for kiwifruit detec-

tion,” in 24th International Conference Image and Vision Computing

New Zealand, IVCNZ 2009 - Conference Proceedings, (Wellington, New

Zealand), pp. 62–66, 2009.

[44] Q. U. Zaman, D. C. Percival, R. J. Gordon, and A. W. Schumann, “Es-

timation of wild blueberry fruit yield using digital color photography,”

Acta Horticulturae, vol. 824, no. 5, pp. 57–66, 2009.

[45] J. Moonrinta, S. Chaivivatrakul, M. N. Dailey, and M. Ekpanyapong,

“Fruit Detection, Tracking, and 3D Reconstruction for Crop Mapping

and Yield Estimation,” in 11th International Conference on Control, Au-

tomation, Robotics and Vision, ICARCV 2010, (Singapore), pp. 1181–

1186, 2010.

[46] S. Nuske, K. Wilshusen, S. Achar, L. Yoder, S. Narasimhan, and

S. Singh, “Automated Visual Yield Estimation in Vineyards,” Journal

of Field Robotics, vol. 31, pp. 837–860, sep 2014.

[47] Z. S. Pothen and S. Nuske, “Texture-based fruit detection via images

using the smooth patterns on the fruit,” in 2016 IEEE International

Conference on Robotics and Automation (ICRA), (Stockholm, Sweden),

pp. 5171–5176, IEEE, may 2016.

[48] H. Patel, R. Jain, and M. Joshi, “Automatic Segmentation and Yield

Measurement of Fruit using Shape Analysis,” International Journal of

Computer Application, vol. 45, no. 7, pp. 19–24, 2012.

212

[49] P. S. Nandyal and M. Jagadeesha, “Crop Growth Prediction Based On

Fruit Recognition Using Machine Vision,” International Journal of Com-

puter Trends and Technology (IJCTT), vol. 4, no. 9, pp. 3132–3138, 2013.

[50] U. O. Dorj, M. Lee, and S. Han, “A comparative study on tangerine de-

tection, counting and yield estimation algorithm,” International Journal

of Security and its Applications, vol. 7, no. 3, pp. 405–412, 2013.

[51] U.-O. Dorj, M. Lee, and S. Han, “A Counting Algorithm for Tangerine

Yield Estimation,” vol. 21, pp. 279–282, 2013.

[52] U.-o. Dorj, M. Lee, and S.-s. Yun, “An yield estimation in citrus orchards

via fruit detection and counting using image processing,” Computers and

Electronics in Agriculture, vol. 140, pp. 103–112, aug 2017.

[53] S. Liu, S. Marden, and M. Whitty, “Towards automated yield estimation

in viticulture,” in Proceedings of the Australasian Conference on Robotics

and Automation, ACRA, (Kensington, NSW, Australia), pp. 2–4, 2013.

[54] W. S. Qureshi, S. Satoh, M. N. Dailey, and M. Ekpanyapong, “Dense

Segmentation of Textured Fruits in Video Sequences,” in Proceedings

of the 9th International Conference on Computer Vision Theory and

Applications, (Lisbon, Portugal), pp. 441–447, SCITEPRESS - Science

and and Technology Publications, 2014.

[55] C. Hung, J. Underwood, J. Nieto, and S. Sukkarieh, A Feature Learn-

ing Based Approach for Automated Fruit Yield Estimation, pp. 485–498.

Brisbane, Australia: Springer International Publishing, 2015.

[56] S. Bargoti and J. P. Underwood, “Image Segmentation for Fruit Detec-

tion and Yield Estimation in Apple Orchards,” Journal of Field Robotics,

vol. 34, pp. 1039–1060, sep 2017.

[57] R. Linker, O. Cohen, and A. Naor, “Determination of the number of

green apples in RGB images recorded in orchards,” Computers and Elec-

tronics in Agriculture, vol. 81, pp. 45–57, 2012.

[58] R. Linker and E. Kelman, “Apple detection in nighttime tree images

using the geometry of light patches around highlights,” Computers and

Electronics in Agriculture, vol. 114, pp. 154–162, jun 2015.

[59] R. Linker, “A procedure for estimating the number of green mature ap-

ples in night-time orchard images using light distribution and its applica-

tion to yield estimation,” Precision Agriculture, vol. 18, no. 1, pp. 59–75,

2017.

213

[60] X. Liu, S. W. Chen, S. Aditya, N. Sivakumar, S. Dcunha, C. Qu,

C. J. Taylor, J. Das, and V. Kumar, “Robust Fruit Counting: Com-

bining Deep Learning, Tracking, and Structure from Motion,” in 2018

IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), (Madrid, Spain), pp. 1045–1052, IEEE, oct 2018.

[61] Z. Malik, S. Ziauddin, A. R. Shahid, and A. Safi, “Detection and Count-

ing of On-Tree Citrus Fruit for Crop Yield Estimation,” International

Journal of Advanced Computer Science and Applications, vol. 7, no. 5,

pp. 519–523, 2016.

[62] W. Maldonado and J. C. Barbosa, “Automatic green fruit counting in

orange trees using digital images,” Computers and Electronics in Agri-

culture, vol. 127, pp. 572–581, sep 2016.

[63] P. Annamalai and W. S. Lee, “Citrus Yield Mapping System Using Ma-

chine Vision,” in Proceedings of the 2003 ASAE Annual Meeting, (Las

Vegas, NV, USA), 2003.

[64] D. Font, M. Tresanchez, D. Mart́ınez, J. Moreno, E. Clotet, and

J. Palaćın, “Vineyard Yield Estimation Based on the Analysis of High

Resolution Images Obtained with Artificial Illumination at Night,” Sen-

sors, vol. 15, pp. 8284–8301, apr 2015.

[65] X. Liu, D. Zhao, W. Jia, C. Ruan, S. Tang, and T. Shen, “A method

of segmenting apples at night based on color and position information,”

Computers and Electronics in Agriculture, vol. 122, pp. 118–123, mar

2016.

[66] N. Behroozi-Khazaei and M. R. Maleki, “A robust algorithm based on

color features for grape cluster segmentation,” Computers and Electron-

ics in Agriculture, vol. 142, pp. 41–49, 2017.

[67] N. Lamb and M. C. Chuah, “A Strawberry Detection System Using Con-

volutional Neural Networks,” in 2018 IEEE International Conference on

Big Data (Big Data), (Seattle, Washington, USA), pp. 2515–2520, IEEE,

dec 2018.

[68] E. Bellocchio, T. A. Ciarfuglia, G. Costante, and P. Valigi, “Weakly

Supervised Fruit Counting for Yield Estimation Using Spatial Consis-

tency,” IEEE Robotics and Automation Letters, vol. 4, pp. 2348–2355,

mar 2019.

[69] N. Habibie, A. M. Nugraha, A. Z. Anshori, M. A. Ma’sum, and

W. Jatmiko, “Fruit mapping mobile robot on simulated agricultural

214

area in Gazebo simulator using simultaneous localization and mapping

(SLAM),” in Proceedings of the 2017 International Symposium on Micro-

NanoMechatronics and Human Science (MHS), (Nagoya, Japan), pp. 1–

7, IEEE, dec 2017.

[70] P. A. Dias, A. Tabb, and H. Medeiros, “Apple flower detection using deep

convolutional networks,” Computers in Industry, vol. 99, no. August,

pp. 17–28, 2018.

[71] A. Gong, J. Yu, Y. He, and Z. Qiu, “Citrus yield estimation based on

images processed by an Android mobile phone,” Biosystems Engineering,

vol. 115, no. 2, pp. 162–170, 2013.

[72] A. Aquino, M. P. Diago, B. Millán, and J. Tardáguila, “A new method-

ology for estimating the grapevine-berry number per cluster using image

analysis,” Biosystems Engineering, vol. 156, pp. 80–95, 2017.

[73] A. Aquino, B. Millan, M.-p. Diago, and J. Tardaguila, “Automated early

yield prediction in vineyards from on-the-go image acquisition,” Com-

puters and Electronics in Agriculture, vol. 144, pp. 26–36, jan 2018.

[74] M. Halstead, C. Mccool, S. Denman, T. Perez, and C. Fookes, “Fruit

Quantity and Ripeness Estimation Using a,” IEEE Robotics and Au-

tomation Letters, vol. 3, no. 4, pp. 2995–3002, 2018.

[75] M. Jones, J. Bell, D. Dredge, M. Seabright, A. Scarfe, M. Duke, and

B. MacDonald, “Design and Testing of a Heavy-Duty Platform for Au-

tonomous Navigation in Kiwifruit Orchards,” [Preprint, submitted to

Biosystems Engineering], 2019.

[76] H. Williams, M. Nejati, S. Hussein, N. Penhall, J. Y. Lim, M. H. Jones,

J. Bell, H. S. Ahn, S. Bradley, P. Schaare, P. Martinsen, M. Alomar,

P. Patel, M. Seabright, M. Duke, A. Scarfe, and B. MacDonald, “Au-

tonomous pollination of individual kiwifruit flowers: Toward a robotic

kiwifruit pollinator,” Journal of Field Robotics, pp. 1–17, jan 2019.

[77] M. Duke, J. Barnett, J. Bell, M. H. Jones, P. Martinsen, B. McDonald,

M. Nejati, A. Scarfe, P. Schaare, M. Seabright, H. Williams, H. Ahn,

and J. Lim, “Automated Pollination of Kiwifruit Flowers,” in 7th Asian-

Australasian Conference on Precision Agriculture (7ACPA), (Hamilton,

New Zealand), pp. 1–5, 2017.

[78] K. Heinrich, A. Roth, L. Breithaupt, B. Möller, and J. Maresch, “Yield

prognosis for the agrarian management of vineyards using deep learning

215

for object counting,” in 14th International Conference on Wirtschaftsin-

formatik, (Siegen, Germany), 2019.

[79] M. Rahnemoonfar and C. Sheppard, “Deep Count : Fruit Counting

Based on Deep Simulated Learning,” Sensors, vol. 17, no. 4, p. 905,

2017.

[80] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for

Image Recognition,” in 2016 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), vol. 32, (Las Vegas, NV, USA), pp. 770–

778, IEEE, jun 2016.

[81] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks

for Large-Scale Image Recognition,” arXiv preprint, vol. arXiv:1409, apr

2014.

[82] M. D. Zeiler and R. Fergus, “Visualizing and Understanding Convolu-

tional Networks,” in Computer Vision – ECCV 2014, pp. 818–833, 2014.

[83] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look

Once: Unified, Real-Time Object Detection,” in 2016 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), (Las Vegas, NV,

USA), pp. 779–788, IEEE, jun 2016.

[84] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and

A. C. Berg, “SSD: Single Shot MultiBox Detector,” in Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intelli-

gence and Lecture Notes in Bioinformatics), vol. 9905 LNCS, pp. 21–37,

2016.

[85] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-

Time Object Detection with,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 39, no. 6, pp. 1137–1149, 2017.

[86] E. Shelhamer, J. Long, and T. Darrell, “Fully Convolutional Networks

for Semantic Segmentation,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 39, pp. 640–651, apr 2017.

[87] Y. Zhou, Y. Zhu, Q. Ye, Q. Qiu, and J. Jiao, “Weakly Supervised In-

stance Segmentation Using Class Peak Response,” in Proceedings of the

2018 IEEE/CVF Conference on Computer Vision and Pattern Recogni-

tion, (Salt Lake City, Utah, USA), pp. 3791–3800, IEEE, jun 2018.

[88] A. Kamilaris and F. X. Prenafeta-Boldú, “Deep learning in agriculture:

A survey,” Computers and Electronics in Agriculture, vol. 147, pp. 70–

90, apr 2018.

216

[89] A. Koirala, K. B. Walsh, Z. Wang, and C. McCarthy, “Deep learning

Method overview and review of use for fruit detection and yield estima-

tion,” Computers and Electronics in Agriculture, vol. 162, pp. 219–234,

jul 2019.

[90] A. Palaniappan, Won Suk Lee, and Thomas F. Burks, “Color Vision

System for Estimating Citrus Yield in Real-time,” in Proceedings of the

2004 ASABE Annual Meeting, (Ottawa, Canada), 2004.

[91] H. W. Kuhn, “The Hungarian method for the assignment problem,”

Naval Research Logistics Quarterly, vol. 2.1, pp. 83–97, feb 1955.

[92] G. Fielding and M. Kam, “Applying the Hungarian method to stereo

matching,” in Proceedings of the 36th IEEE Conference on Decision and

Control, vol. 2, (San Diego, CA, USA), pp. 1928–1933, IEEE, 1998.

[93] A. Yuille and T. Poggio, “A generalized ordering constraint for stereo cor-

respondence,” tech. rep., Artificial Intelligence Laboratory, Cambridge,

Massachusetts, Cambridge, Massachusetts, USA, 1984.

[94] Y. Si, G. Liu, and J. Feng, “Location of apples in trees using stereoscopic

vision,” Computers and Electronics in Agriculture, vol. 112, pp. 68–74,

2015.

[95] A. Plebe and G. Grasso, “Localization of spherical fruits for robotic

harvesting,” Machine Vision and Applications, vol. 13, pp. 70–79, nov

2001.

[96] R. Xiang, H. Jiang, and Y. Ying, “Recognition of clustered tomatoes

based on binocular stereo vision,” Computers and Electronics in Agri-

culture, vol. 106, pp. 75–90, 2014.

[97] M. Nielsen, D. C. Slaughter, and C. Gliever, “Vision-based 3D peach tree

reconstruction for automated blossom thinning,” IEEE Transactions on

Industrial Informatics, vol. 8, no. 1, pp. 188–196, 2012.

[98] C. Wang, X. Zou, Y. Tang, L. Luo, and W. Feng, “Localisation of litchi in

an unstructured environment using binocular stereo vision,” Biosystems

Engineering, vol. 145, pp. 39–51, may 2016.

[99] P. Besl and N. D. McKay, “A method for registration of 3-D shapes,”

IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 14, pp. 239–256, feb 1992.

[100] R. L. Larkins, Analysing and Enhancing the Coarse Registration Pipeline

by. Doctral thesis, University of Waikato, 2015.

217

[101] G. Agamennoni, S. Fontana, R. Y. Siegwart, and D. G. Sorrenti, “Point

Clouds Registration with Probabilistic Data Association,” in IEEE In-

ternational Conference on Intelligent Robots and Systems, vol. 2016-

Novem, (Daejeon, Korea), pp. 4092–4098, 2016.

[102] S. Kohlbrecher, O. von Stryk, J. Meyer, and U. Klingauf, “A flex-

ible and scalable SLAM system with full 3D motion estimation,” in

2011 IEEE International Symposium on Safety, Security, and Rescue

Robotics, (Shanghai, China), pp. 155–160, IEEE, nov 2011.

[103] G. Grisetti, C. Stachniss, and W. Burgard, “Improved Techniques for

Grid Mapping With Rao-Blackwellized Particle Filters,” IEEE Transac-

tions on Robotics, vol. 23, pp. 34–46, feb 2007.

[104] J. M. Santos, D. Portugal, and R. P. Rocha, “An evaluation of 2D SLAM

techniques available in Robot Operating System,” in 2013 IEEE Inter-

national Symposium on Safety, Security, and Rescue Robotics (SSRR),

(Linköping, Sweden), pp. 1–6, IEEE, oct 2013.

[105] W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop clo-

sure in 2D LIDAR SLAM,” in 2016 IEEE International Conference on

Robotics and Automation (ICRA), vol. 2016-June, (Stockholm, Sweden),

pp. 1271–1278, IEEE, may 2016.

[106] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,

R. Wheeler, and A. Y. Ng, “ROS: an open-source Robot Operating Sys-

tem,” in ICRA workshop on open source software, vol. 3, (Kobe, Japan),

p. 5, 2009.

[107] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software

Tools, 2000.

[108] Q. U. Zaman, a. W. Schumann, and H. K. Hostler, “Estimation of citrus

fruit yield using ultrasonically-sensed tree size,” Applied Engineering in

Agriculture, vol. 22, no. 1, pp. 39–44, 2006.

[109] Z. Pothen and S. Nuske, “Automated Assessment and Mapping of Grape

Quality through Image-based Color Analysis,” IFAC-PapersOnLine,

vol. 49, no. 16, pp. 72–78, 2016.

[110] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),”

in 2011 IEEE International Conference on Robotics and Automation,

(Shanghai, China), pp. 1–4, IEEE, may 2011.

218

[111] K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask R-CNN,” in

Proceedings of the IEEE International Conference on Computer Vision,

vol. 2017-Octob, (Venice, Italy), pp. 2980–2988, IEEE, oct 2017.

[112] J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement,”

arXiv preprint, 2018.

[113] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal Loss

for Dense Object Detection,” in 2017 IEEE International Conference

on Computer Vision (ICCV), (Venice, Italy), pp. 2999–3007, IEEE, oct

2017.

[114] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.

Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,

A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kud-

lur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah,

M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,

V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wat-

tenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-Scale Ma-

chine Learning on Heterogeneous Distributed Systems,” arXiv preprint,

mar 2016.

[115] W. Abdulla, “Mask R-CNN for object detection and instance segmenta-

tion on Keras and TensorFlow,” Github repository, 2017.

[116] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,

P. Dollr, and C. L. Zitnick, “Microsoft coco: Common objects in con-

text,” Lecture Notes in Computer Science, p. 740755, 2014.

[117] M. Seabright, L. Streeter, M. Cree, M. Duke, and R. Tighe, “Simple

Stereo Matching Algorithm for Localising Keypoints in a Restricted

Search Space,” in 2018 International Conference on Image and Vision

Computing New Zealand (IVCNZ), vol. 2018-Novem, (Auckland, New

Zealand), pp. 1–6, IEEE, nov 2018.

[118] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, M. Blondel, A. Müller, J. Nothman, G. Louppe, P. Pretten-

hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot, and É. Duchesnay, “Scikit-learn: Machine Learn-

ing in Python,” Journal of Machine Learning Research, vol. 12, jan 2011.

[119] J. L. Bentley, “Multidimensional binary search trees used for associative

searching,” Communications of the ACM, vol. 18, pp. 509–517, sep 1975.

219

[120] Y. Tsin and T. Kanade, “A Correlation-Based Approach to Robust Point

Set Registration,” in Computer Vision - ECCV 2004, 8th European Con-

ference on Computer Vision, (Prague, Czech Republic), pp. 558–569,

2004.

[121] F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet: A unified em-

bedding for face recognition and clustering,” in 2015 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), (Boston, MA,

USA), pp. 815–823, IEEE, jun 2015.

[122] J. Nocedal and S. J. Wright, Numerical Optimization. New York:

Springer-Verlag, 2006.

[123] G. Hutching, “Zespri to pay $250,000 after or-

chard worker dies in quad bike accident.”

https://www.stuff.co.nz/business/farming/98373542/zespri-to-pay-

250000-after-orchard-worker-dies-in-quad-bike-accident [Online, Ac-

cessed 2019-09-23], 2017.

[124] P. Jeyakumar, C. W. N. Anderson, A. Holmes, and S. Miller, “Optimis-

ing Copper Sprays on Kiwifruit: a Review,” tech. rep., Fertilizer and

Lime Research Centre, At Palmerston North, New Zealand, Plamerston

North, New Zealand, 2014.

[125] Eurofins, “Kiwifruit Maturity Clearance Testing.”

https://www.eurofins.co.nz/fruit-quality-testing/projects/kiwifruit-

maturity-clearance-testing/ [Online, Accessed 2019-09-23], 2018.

Appendices

A Example Packout Report

221

Figure 12.3: An example packout report with personally identifying informa-

tion censored.

